Options
All
  • Public
  • Public/Protected
  • All
Menu

External module "types/opencv/core_array"

Index

Type aliases

BorderTypes

BorderTypes: any

Various border types, image boundaries are denoted with |

[borderInterpolate], [copyMakeBorder]

CmpTypes

CmpTypes: any

Various border types, image boundaries are denoted with |

[borderInterpolate], [copyMakeBorder]

DecompTypes

DecompTypes: any

Various border types, image boundaries are denoted with |

[borderInterpolate], [copyMakeBorder]

DftFlags

DftFlags: any

Various border types, image boundaries are denoted with |

[borderInterpolate], [copyMakeBorder]

GemmFlags

GemmFlags: any

Various border types, image boundaries are denoted with |

[borderInterpolate], [copyMakeBorder]

NormTypes

NormTypes: any

Various border types, image boundaries are denoted with |

[borderInterpolate], [copyMakeBorder]

RotateFlags

RotateFlags: any

Various border types, image boundaries are denoted with |

[borderInterpolate], [copyMakeBorder]

Variables

Const BORDER_CONSTANT

BORDER_CONSTANT: BorderTypes

Const BORDER_DEFAULT

BORDER_DEFAULT: BorderTypes

Const BORDER_ISOLATED

BORDER_ISOLATED: BorderTypes

Const BORDER_REFLECT

BORDER_REFLECT: BorderTypes

Const BORDER_REFLECT101

BORDER_REFLECT101: BorderTypes

Const BORDER_REFLECT_101

BORDER_REFLECT_101: BorderTypes

Const BORDER_REPLICATE

BORDER_REPLICATE: BorderTypes

Const BORDER_TRANSPARENT

BORDER_TRANSPARENT: BorderTypes

Const BORDER_WRAP

BORDER_WRAP: BorderTypes

Const CMP_EQ

CMP_EQ: CmpTypes

Const CMP_GE

CMP_GE: CmpTypes

Const CMP_GT

CMP_GT: CmpTypes

Const CMP_LE

CMP_LE: CmpTypes

Const CMP_LT

CMP_LT: CmpTypes

Const CMP_NE

CMP_NE: CmpTypes

Const DCT_INVERSE

DCT_INVERSE: DftFlags

performs an inverse 1D or 2D transform instead of the default forward transform.

Const DCT_ROWS

DCT_ROWS: DftFlags

performs a forward or inverse transform of every individual row of the input matrix. This flag enables you to transform multiple vectors simultaneously and can be used to decrease the overhead (which is sometimes several times larger than the processing itself) to perform 3D and higher-dimensional transforms and so forth.

Const DECOMP_CHOLESKY

DECOMP_CHOLESKY: DecompTypes

Cholesky $LL^T$ factorization; the matrix src1 must be symmetrical and positively defined

Const DECOMP_EIG

DECOMP_EIG: DecompTypes

eigenvalue decomposition; the matrix src1 must be symmetrical

Const DECOMP_LU

DECOMP_LU: DecompTypes

Gaussian elimination with the optimal pivot element chosen.

Const DECOMP_NORMAL

DECOMP_NORMAL: DecompTypes

while all the previous flags are mutually exclusive, this flag can be used together with any of the previous; it means that the normal equations $\\texttt{src1}^T\\cdot\\texttt{src1}\\cdot\\texttt{dst}=\\texttt{src1}^T\\texttt{src2}$ are solved instead of the original system $\\texttt{src1}\\cdot\\texttt{dst}=\\texttt{src2}$

Const DECOMP_QR

DECOMP_QR: DecompTypes

QR factorization; the system can be over-defined and/or the matrix src1 can be singular

Const DECOMP_SVD

DECOMP_SVD: DecompTypes

singular value decomposition ([SVD]) method; the system can be over-defined and/or the matrix src1 can be singular

Const DFT_COMPLEX_INPUT

DFT_COMPLEX_INPUT: DftFlags

specifies that input is complex input. If this flag is set, the input must have 2 channels. On the other hand, for backwards compatibility reason, if input has 2 channels, input is already considered complex.

Const DFT_COMPLEX_OUTPUT

DFT_COMPLEX_OUTPUT: DftFlags

performs a forward transformation of 1D or 2D real array; the result, though being a complex array, has complex-conjugate symmetry (CCS, see the function description below for details), and such an array can be packed into a real array of the same size as input, which is the fastest option and which is what the function does by default; however, you may wish to get a full complex array (for simpler spectrum analysis, and so on) - pass the flag to enable the function to produce a full-size complex output array.

Const DFT_INVERSE

DFT_INVERSE: DftFlags

performs an inverse 1D or 2D transform instead of the default forward transform.

Const DFT_REAL_OUTPUT

DFT_REAL_OUTPUT: DftFlags

performs an inverse transformation of a 1D or 2D complex array; the result is normally a complex array of the same size, however, if the input array has conjugate-complex symmetry (for example, it is a result of forward transformation with DFT_COMPLEX_OUTPUT flag), the output is a real array; while the function itself does not check whether the input is symmetrical or not, you can pass the flag and then the function will assume the symmetry and produce the real output array (note that when the input is packed into a real array and inverse transformation is executed, the function treats the input as a packed complex-conjugate symmetrical array, and the output will also be a real array).

Const DFT_ROWS

DFT_ROWS: DftFlags

performs a forward or inverse transform of every individual row of the input matrix; this flag enables you to transform multiple vectors simultaneously and can be used to decrease the overhead (which is sometimes several times larger than the processing itself) to perform 3D and higher-dimensional transformations and so forth.

Const DFT_SCALE

DFT_SCALE: DftFlags

scales the result: divide it by the number of array elements. Normally, it is combined with DFT_INVERSE.

Const GEMM_1_T

GEMM_1_T: GemmFlags

Const GEMM_2_T

GEMM_2_T: GemmFlags

Const GEMM_3_T

GEMM_3_T: GemmFlags

Const NORM_HAMMING

NORM_HAMMING: NormTypes

In the case of one input array, calculates the [Hamming] distance of the array from zero, In the case of two input arrays, calculates the [Hamming] distance between the arrays.

Const NORM_HAMMING2

NORM_HAMMING2: NormTypes

Similar to NORM_HAMMING, but in the calculation, each two bits of the input sequence will be added and treated as a single bit to be used in the same calculation as NORM_HAMMING.

Const NORM_INF

NORM_INF: NormTypes

\\[ norm = \\forkthree {\\|\\texttt{src1}\\|_{L_{\\infty}} = \\max _I | \\texttt{src1} (I)|}{if \\(\\texttt{normType} = \\texttt{NORM_INF}\\) } {\\|\\texttt{src1}-\\texttt{src2}\\|_{L_{\\infty}} = \\max _I | \\texttt{src1} (I) - \\texttt{src2} (I)|}{if \\(\\texttt{normType} = \\texttt{NORM_INF}\\) } {\\frac{\\|\\texttt{src1}-\\texttt{src2}\\|_{L_{\\infty}} }{\\|\\texttt{src2}\\|_{L_{\\infty}} }}{if \\(\\texttt{normType} = \\texttt{NORM_RELATIVE | NORM_INF}\\) } \\]

Const NORM_L1

NORM_L1: NormTypes

\\[ norm = \\forkthree {\\| \\texttt{src1} \\| _{L_1} = \\sum _I | \\texttt{src1} (I)|}{if \\(\\texttt{normType} = \\texttt{NORM_L1}\\)} { \\| \\texttt{src1} - \\texttt{src2} \\| _{L_1} = \\sum _I | \\texttt{src1} (I) - \\texttt{src2} (I)|}{if \\(\\texttt{normType} = \\texttt{NORM_L1}\\) } { \\frac{\\|\\texttt{src1}-\\texttt{src2}\\|_{L_1} }{\\|\\texttt{src2}\\|_{L_1}} }{if \\(\\texttt{normType} = \\texttt{NORM_RELATIVE | NORM_L1}\\) } \\]

Const NORM_L2

NORM_L2: NormTypes

\\[ norm = \\forkthree { \\| \\texttt{src1} \\| _{L_2} = \\sqrt{\\sum_I \\texttt{src1}(I)^2} }{if \\(\\texttt{normType} = \\texttt{NORM_L2}\\) } { \\| \\texttt{src1} - \\texttt{src2} \\| _{L_2} = \\sqrt{\\sum_I (\\texttt{src1}(I) - \\texttt{src2}(I))^2} }{if \\(\\texttt{normType} = \\texttt{NORM_L2}\\) } { \\frac{\\|\\texttt{src1}-\\texttt{src2}\\|_{L_2} }{\\|\\texttt{src2}\\|_{L_2}} }{if \\(\\texttt{normType} = \\texttt{NORM_RELATIVE | NORM_L2}\\) } \\]

Const NORM_L2SQR

NORM_L2SQR: NormTypes

\\[ norm = \\forkthree { \\| \\texttt{src1} \\| _{L_2} ^{2} = \\sum_I \\texttt{src1}(I)^2} {if \\(\\texttt{normType} = \\texttt{NORM_L2SQR}\\)} { \\| \\texttt{src1} - \\texttt{src2} \\| _{L_2} ^{2} = \\sum_I (\\texttt{src1}(I) - \\texttt{src2}(I))^2 }{if \\(\\texttt{normType} = \\texttt{NORM_L2SQR}\\) } { \\left(\\frac{\\|\\texttt{src1}-\\texttt{src2}\\|_{L_2} }{\\|\\texttt{src2}\\|_{L_2}}\\right)^2 }{if \\(\\texttt{normType} = \\texttt{NORM_RELATIVE | NORM_L2SQR}\\) } \\]

Const NORM_MINMAX

NORM_MINMAX: NormTypes

Const NORM_RELATIVE

NORM_RELATIVE: NormTypes

Const NORM_TYPE_MASK

NORM_TYPE_MASK: NormTypes

Const ROTATE_180

ROTATE_180: RotateFlags

Const ROTATE_90_CLOCKWISE

ROTATE_90_CLOCKWISE: RotateFlags

Const ROTATE_90_COUNTERCLOCKWISE

ROTATE_90_COUNTERCLOCKWISE: RotateFlags

Functions

LUT

  • LUT(src: InputArray, lut: InputArray, dst: OutputArray): void
  • The function LUT fills the output array with values from the look-up table. Indices of the entries are taken from the input array. That is, the function processes each element of src as follows: \\[\\texttt{dst} (I) \\leftarrow \\texttt{lut(src(I) + d)}\\] where \\[d = \\fork{0}{if \\(\\texttt{src}\\) has depth \\(\\texttt{CV_8U}\\)}{128}{if \\(\\texttt{src}\\) has depth \\(\\texttt{CV_8S}\\)}\\]

    [convertScaleAbs], [Mat::convertTo]

    Parameters

    • src: InputArray

      input array of 8-bit elements.

    • lut: InputArray

      look-up table of 256 elements; in case of multi-channel input array, the table should either have a single channel (in this case the same table is used for all channels) or the same number of channels as in the input array.

    • dst: OutputArray

      output array of the same size and number of channels as src, and the same depth as lut.

    Returns void

Mahalanobis

  • Mahalanobis(v1: InputArray, v2: InputArray, icovar: InputArray): double
  • The function [cv::Mahalanobis] calculates and returns the weighted distance between two vectors: \\[d( \\texttt{vec1} , \\texttt{vec2} )= \\sqrt{\\sum_{i,j}{\\texttt{icovar(i,j)}\\cdot(\\texttt{vec1}(I)-\\texttt{vec2}(I))\\cdot(\\texttt{vec1(j)}-\\texttt{vec2(j)})} }\\] The covariance matrix may be calculated using the [calcCovarMatrix] function and then inverted using the invert function (preferably using the [DECOMP_SVD] method, as the most accurate).

    Parameters

    • v1: InputArray

      first 1D input vector.

    • v2: InputArray

      second 1D input vector.

    • icovar: InputArray

      inverse covariance matrix.

    Returns double

PCABackProject

  • PCABackProject(data: InputArray, mean: InputArray, eigenvectors: InputArray, result: OutputArray): void
  • wrap [PCA::backProject]

    Parameters

    • data: InputArray
    • mean: InputArray
    • eigenvectors: InputArray
    • result: OutputArray

    Returns void

PCACompute

  • PCACompute(data: InputArray, mean: InputOutputArray, eigenvectors: OutputArray, maxComponents?: int): void
  • PCACompute(data: InputArray, mean: InputOutputArray, eigenvectors: OutputArray, eigenvalues: OutputArray, maxComponents?: int): void
  • PCACompute(data: InputArray, mean: InputOutputArray, eigenvectors: OutputArray, retainedVariance: double): void
  • PCACompute(data: InputArray, mean: InputOutputArray, eigenvectors: OutputArray, eigenvalues: OutputArray, retainedVariance: double): void
  • wrap PCA::operator()

    Parameters

    • data: InputArray
    • mean: InputOutputArray
    • eigenvectors: OutputArray
    • Optional maxComponents: int

    Returns void

  • wrap PCA::operator() and add eigenvalues output parameter

    Parameters

    • data: InputArray
    • mean: InputOutputArray
    • eigenvectors: OutputArray
    • eigenvalues: OutputArray
    • Optional maxComponents: int

    Returns void

  • wrap PCA::operator()

    Parameters

    • data: InputArray
    • mean: InputOutputArray
    • eigenvectors: OutputArray
    • retainedVariance: double

    Returns void

  • wrap PCA::operator() and add eigenvalues output parameter

    Parameters

    • data: InputArray
    • mean: InputOutputArray
    • eigenvectors: OutputArray
    • eigenvalues: OutputArray
    • retainedVariance: double

    Returns void

PCAProject

  • PCAProject(data: InputArray, mean: InputArray, eigenvectors: InputArray, result: OutputArray): void
  • wrap [PCA::project]

    Parameters

    • data: InputArray
    • mean: InputArray
    • eigenvectors: InputArray
    • result: OutputArray

    Returns void

PSNR

  • PSNR(src1: InputArray, src2: InputArray, R?: double): double
  • This function calculates the Peak Signal-to-Noise Ratio (PSNR) image quality metric in decibels (dB), between two input arrays src1 and src2. The arrays must have the same type.

    The PSNR is calculated as follows:

    \\[ \\texttt{PSNR} = 10 \\cdot \\log_{10}{\\left( \\frac{R^2}{MSE} \\right) } \\]

    where R is the maximum integer value of depth (e.g. 255 in the case of CV_8U data) and MSE is the mean squared error between the two arrays.

    Parameters

    • src1: InputArray

      first input array.

    • src2: InputArray

      second input array of the same size as src1.

    • Optional R: double

      the maximum pixel value (255 by default)

    Returns double

SVBackSubst

  • SVBackSubst(w: InputArray, u: InputArray, vt: InputArray, rhs: InputArray, dst: OutputArray): void
  • wrap [SVD::backSubst]

    Parameters

    • w: InputArray
    • u: InputArray
    • vt: InputArray
    • rhs: InputArray
    • dst: OutputArray

    Returns void

SVDecomp

  • SVDecomp(src: InputArray, w: OutputArray, u: OutputArray, vt: OutputArray, flags?: int): void
  • wrap [SVD::compute]

    Parameters

    • src: InputArray
    • w: OutputArray
    • u: OutputArray
    • vt: OutputArray
    • Optional flags: int

    Returns void

absdiff

  • absdiff(src1: InputArray, src2: InputArray, dst: OutputArray): void
  • The function [cv::absdiff] calculates: Absolute difference between two arrays when they have the same size and type: \\[\\texttt{dst}(I) = \\texttt{saturate} (| \\texttt{src1}(I) - \\texttt{src2}(I)|)\\] Absolute difference between an array and a scalar when the second array is constructed from Scalar or has as many elements as the number of channels in src1: \\[\\texttt{dst}(I) = \\texttt{saturate} (| \\texttt{src1}(I) - \\texttt{src2} |)\\] Absolute difference between a scalar and an array when the first array is constructed from Scalar or has as many elements as the number of channels in src2: \\[\\texttt{dst}(I) = \\texttt{saturate} (| \\texttt{src1} - \\texttt{src2}(I) |)\\] where I is a multi-dimensional index of array elements. In case of multi-channel arrays, each channel is processed independently.

    Saturation is not applied when the arrays have the depth CV_32S. You may even get a negative value in the case of overflow.

    cv::abs(const Mat&)

    Parameters

    • src1: InputArray

      first input array or a scalar.

    • src2: InputArray

      second input array or a scalar.

    • dst: OutputArray

      output array that has the same size and type as input arrays.

    Returns void

add

  • add(src1: InputArray, src2: InputArray, dst: OutputArray, mask?: InputArray, dtype?: int): void
  • The function add calculates:

    Sum of two arrays when both input arrays have the same size and the same number of channels: \\[\\texttt{dst}(I) = \\texttt{saturate} ( \\texttt{src1}(I) + \\texttt{src2}(I)) \\quad \\texttt{if mask}(I) \\ne0\\] Sum of an array and a scalar when src2 is constructed from Scalar or has the same number of elements as src1.channels(): \\[\\texttt{dst}(I) = \\texttt{saturate} ( \\texttt{src1}(I) + \\texttt{src2} ) \\quad \\texttt{if mask}(I) \\ne0\\] Sum of a scalar and an array when src1 is constructed from Scalar or has the same number of elements as src2.channels(): \\[\\texttt{dst}(I) = \\texttt{saturate} ( \\texttt{src1} + \\texttt{src2}(I) ) \\quad \\texttt{if mask}(I) \\ne0\\] where I is a multi-dimensional index of array elements. In case of multi-channel arrays, each channel is processed independently.

    The first function in the list above can be replaced with matrix expressions:

    dst = src1 + src2;
    dst += src1; // equivalent to add(dst, src1, dst);

    The input arrays and the output array can all have the same or different depths. For example, you can add a 16-bit unsigned array to a 8-bit signed array and store the sum as a 32-bit floating-point array. Depth of the output array is determined by the dtype parameter. In the second and third cases above, as well as in the first case, when src1.depth() == src2.depth(), dtype can be set to the default -1. In this case, the output array will have the same depth as the input array, be it src1, src2 or both.

    Saturation is not applied when the output array has the depth CV_32S. You may even get result of an incorrect sign in the case of overflow.

    [subtract], [addWeighted], [scaleAdd], [Mat::convertTo]

    Parameters

    • src1: InputArray

      first input array or a scalar.

    • src2: InputArray

      second input array or a scalar.

    • dst: OutputArray

      output array that has the same size and number of channels as the input array(s); the depth is defined by dtype or src1/src2.

    • Optional mask: InputArray

      optional operation mask - 8-bit single channel array, that specifies elements of the output array to be changed.

    • Optional dtype: int

      optional depth of the output array (see the discussion below).

    Returns void

addWeighted

  • addWeighted(src1: InputArray, alpha: double, src2: InputArray, beta: double, gamma: double, dst: OutputArray, dtype?: int): void
  • The function addWeighted calculates the weighted sum of two arrays as follows: \\[\\texttt{dst} (I)= \\texttt{saturate} ( \\texttt{src1} (I)* \\texttt{alpha} + \\texttt{src2} (I)* \\texttt{beta} + \\texttt{gamma} )\\] where I is a multi-dimensional index of array elements. In case of multi-channel arrays, each channel is processed independently. The function can be replaced with a matrix expression:

    dst = src1*alpha + src2*beta + gamma;

    Saturation is not applied when the output array has the depth CV_32S. You may even get result of an incorrect sign in the case of overflow.

    [add], [subtract], [scaleAdd], [Mat::convertTo]

    Parameters

    • src1: InputArray

      first input array.

    • alpha: double

      weight of the first array elements.

    • src2: InputArray

      second input array of the same size and channel number as src1.

    • beta: double

      weight of the second array elements.

    • gamma: double

      scalar added to each sum.

    • dst: OutputArray

      output array that has the same size and number of channels as the input arrays.

    • Optional dtype: int

      optional depth of the output array; when both input arrays have the same depth, dtype can be set to -1, which will be equivalent to src1.depth().

    Returns void

batchDistance

  • batchDistance(src1: InputArray, src2: InputArray, dist: OutputArray, dtype: int, nidx: OutputArray, normType?: int, K?: int, mask?: InputArray, update?: int, crosscheck?: bool): void
  • see

    Parameters

    • src1: InputArray
    • src2: InputArray
    • dist: OutputArray
    • dtype: int
    • nidx: OutputArray
    • Optional normType: int
    • Optional K: int
    • Optional mask: InputArray
    • Optional update: int
    • Optional crosscheck: bool

    Returns void

bitwise_and

  • bitwise_and(src1: InputArray, src2: InputArray, dst: OutputArray, mask?: InputArray): void
  • The function [cv::bitwise_and] calculates the per-element bit-wise logical conjunction for: Two arrays when src1 and src2 have the same size: \\[\\texttt{dst} (I) = \\texttt{src1} (I) \\wedge \\texttt{src2} (I) \\quad \\texttt{if mask} (I) \\ne0\\] An array and a scalar when src2 is constructed from Scalar or has the same number of elements as src1.channels(): \\[\\texttt{dst} (I) = \\texttt{src1} (I) \\wedge \\texttt{src2} \\quad \\texttt{if mask} (I) \\ne0\\] A scalar and an array when src1 is constructed from Scalar or has the same number of elements as src2.channels(): \\[\\texttt{dst} (I) = \\texttt{src1} \\wedge \\texttt{src2} (I) \\quad \\texttt{if mask} (I) \\ne0\\] In case of floating-point arrays, their machine-specific bit representations (usually IEEE754-compliant) are used for the operation. In case of multi-channel arrays, each channel is processed independently. In the second and third cases above, the scalar is first converted to the array type.

    Parameters

    • src1: InputArray

      first input array or a scalar.

    • src2: InputArray

      second input array or a scalar.

    • dst: OutputArray

      output array that has the same size and type as the input arrays.

    • Optional mask: InputArray

      optional operation mask, 8-bit single channel array, that specifies elements of the output array to be changed.

    Returns void

bitwise_not

  • bitwise_not(src: InputArray, dst: OutputArray, mask?: InputArray): void
  • The function [cv::bitwise_not] calculates per-element bit-wise inversion of the input array: \\[\\texttt{dst} (I) = \\neg \\texttt{src} (I)\\] In case of a floating-point input array, its machine-specific bit representation (usually IEEE754-compliant) is used for the operation. In case of multi-channel arrays, each channel is processed independently.

    Parameters

    • src: InputArray

      input array.

    • dst: OutputArray

      output array that has the same size and type as the input array.

    • Optional mask: InputArray

      optional operation mask, 8-bit single channel array, that specifies elements of the output array to be changed.

    Returns void

bitwise_or

  • bitwise_or(src1: InputArray, src2: InputArray, dst: OutputArray, mask?: InputArray): void
  • The function [cv::bitwise_or] calculates the per-element bit-wise logical disjunction for: Two arrays when src1 and src2 have the same size: \\[\\texttt{dst} (I) = \\texttt{src1} (I) \\vee \\texttt{src2} (I) \\quad \\texttt{if mask} (I) \\ne0\\] An array and a scalar when src2 is constructed from Scalar or has the same number of elements as src1.channels(): \\[\\texttt{dst} (I) = \\texttt{src1} (I) \\vee \\texttt{src2} \\quad \\texttt{if mask} (I) \\ne0\\] A scalar and an array when src1 is constructed from Scalar or has the same number of elements as src2.channels(): \\[\\texttt{dst} (I) = \\texttt{src1} \\vee \\texttt{src2} (I) \\quad \\texttt{if mask} (I) \\ne0\\] In case of floating-point arrays, their machine-specific bit representations (usually IEEE754-compliant) are used for the operation. In case of multi-channel arrays, each channel is processed independently. In the second and third cases above, the scalar is first converted to the array type.

    Parameters

    • src1: InputArray

      first input array or a scalar.

    • src2: InputArray

      second input array or a scalar.

    • dst: OutputArray

      output array that has the same size and type as the input arrays.

    • Optional mask: InputArray

      optional operation mask, 8-bit single channel array, that specifies elements of the output array to be changed.

    Returns void

bitwise_xor

  • bitwise_xor(src1: InputArray, src2: InputArray, dst: OutputArray, mask?: InputArray): void
  • The function [cv::bitwise_xor] calculates the per-element bit-wise logical "exclusive-or" operation for: Two arrays when src1 and src2 have the same size: \\[\\texttt{dst} (I) = \\texttt{src1} (I) \\oplus \\texttt{src2} (I) \\quad \\texttt{if mask} (I) \\ne0\\] An array and a scalar when src2 is constructed from Scalar or has the same number of elements as src1.channels(): \\[\\texttt{dst} (I) = \\texttt{src1} (I) \\oplus \\texttt{src2} \\quad \\texttt{if mask} (I) \\ne0\\] A scalar and an array when src1 is constructed from Scalar or has the same number of elements as src2.channels(): \\[\\texttt{dst} (I) = \\texttt{src1} \\oplus \\texttt{src2} (I) \\quad \\texttt{if mask} (I) \\ne0\\] In case of floating-point arrays, their machine-specific bit representations (usually IEEE754-compliant) are used for the operation. In case of multi-channel arrays, each channel is processed independently. In the 2nd and 3rd cases above, the scalar is first converted to the array type.

    Parameters

    • src1: InputArray

      first input array or a scalar.

    • src2: InputArray

      second input array or a scalar.

    • dst: OutputArray

      output array that has the same size and type as the input arrays.

    • Optional mask: InputArray

      optional operation mask, 8-bit single channel array, that specifies elements of the output array to be changed.

    Returns void

borderInterpolate

  • The function computes and returns the coordinate of a donor pixel corresponding to the specified extrapolated pixel when using the specified extrapolation border mode. For example, if you use [cv::BORDER_WRAP] mode in the horizontal direction, [cv::BORDER_REFLECT_101] in the vertical direction and want to compute value of the "virtual" pixel Point(-5, 100) in a floating-point image img , it looks like:

    float val = img.at<float>(borderInterpolate(100, img.rows, cv::BORDER_REFLECT_101),
                              borderInterpolate(-5, img.cols, cv::BORDER_WRAP));

    Normally, the function is not called directly. It is used inside filtering functions and also in copyMakeBorder.

    [copyMakeBorder]

    Parameters

    • p: int

      0-based coordinate of the extrapolated pixel along one of the axes, likely <0 or >= len

    • len: int

      Length of the array along the corresponding axis.

    • borderType: int

      Border type, one of the BorderTypes, except for BORDER_TRANSPARENT and BORDER_ISOLATED . When borderType==BORDER_CONSTANT , the function always returns -1, regardless of p and len.

    Returns int

calcCovarMatrix

  • calcCovarMatrix(samples: any, nsamples: int, covar: any, mean: any, flags: int, ctype?: int): void
  • calcCovarMatrix(samples: InputArray, covar: OutputArray, mean: InputOutputArray, flags: int, ctype?: int): void
  • The function [cv::calcCovarMatrix] calculates the covariance matrix and, optionally, the mean vector of the set of input vectors.

    [PCA], [mulTransposed], [Mahalanobis]

    Parameters

    • samples: any

      samples stored as separate matrices

    • nsamples: int

      number of samples

    • covar: any

      output covariance matrix of the type ctype and square size.

    • mean: any

      input or output (depending on the flags) array as the average value of the input vectors.

    • flags: int

      operation flags as a combination of CovarFlags

    • Optional ctype: int

      type of the matrixl; it equals 'CV_64F' by default.

    Returns void

  • This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

    use [COVAR_ROWS] or [COVAR_COLS] flag

    Parameters

    • samples: InputArray

      samples stored as rows/columns of a single matrix.

    • covar: OutputArray

      output covariance matrix of the type ctype and square size.

    • mean: InputOutputArray

      input or output (depending on the flags) array as the average value of the input vectors.

    • flags: int

      operation flags as a combination of CovarFlags

    • Optional ctype: int

      type of the matrixl; it equals 'CV_64F' by default.

    Returns void

cartToPolar

  • cartToPolar(x: InputArray, y: InputArray, magnitude: OutputArray, angle: OutputArray, angleInDegrees?: bool): void
  • The function [cv::cartToPolar] calculates either the magnitude, angle, or both for every 2D vector (x(I),y(I)): \\[\\begin{array}{l} \\texttt{magnitude} (I)= \\sqrt{\\texttt{x}(I)^2+\\texttt{y}(I)^2} , \\\\ \\texttt{angle} (I)= \\texttt{atan2} ( \\texttt{y} (I), \\texttt{x} (I))[ \\cdot180 / \\pi ] \\end{array}\\]

    The angles are calculated with accuracy about 0.3 degrees. For the point (0,0), the angle is set to 0.

    [Sobel], [Scharr]

    Parameters

    • x: InputArray

      array of x-coordinates; this must be a single-precision or double-precision floating-point array.

    • y: InputArray

      array of y-coordinates, that must have the same size and same type as x.

    • magnitude: OutputArray

      output array of magnitudes of the same size and type as x.

    • angle: OutputArray

      output array of angles that has the same size and type as x; the angles are measured in radians (from 0 to 2*Pi) or in degrees (0 to 360 degrees).

    • Optional angleInDegrees: bool

      a flag, indicating whether the angles are measured in radians (which is by default), or in degrees.

    Returns void

checkRange

  • The function [cv::checkRange] checks that every array element is neither NaN nor infinite. When minVal > -DBL_MAX and maxVal < DBL_MAX, the function also checks that each value is between minVal and maxVal. In case of multi-channel arrays, each channel is processed independently. If some values are out of range, position of the first outlier is stored in pos (when pos != NULL). Then, the function either returns false (when quiet=true) or throws an exception.

    Parameters

    • a: InputArray

      input array.

    • Optional quiet: bool

      a flag, indicating whether the functions quietly return false when the array elements are out of range or they throw an exception.

    • Optional pos: any

      optional output parameter, when not NULL, must be a pointer to array of src.dims elements.

    • Optional minVal: double

      inclusive lower boundary of valid values range.

    • Optional maxVal: double

      exclusive upper boundary of valid values range.

    Returns bool

compare

  • compare(src1: InputArray, src2: InputArray, dst: OutputArray, cmpop: int): void
  • The function compares: Elements of two arrays when src1 and src2 have the same size: \\[\\texttt{dst} (I) = \\texttt{src1} (I) \\,\\texttt{cmpop}\\, \\texttt{src2} (I)\\] Elements of src1 with a scalar src2 when src2 is constructed from Scalar or has a single element: \\[\\texttt{dst} (I) = \\texttt{src1}(I) \\,\\texttt{cmpop}\\, \\texttt{src2}\\] src1 with elements of src2 when src1 is constructed from Scalar or has a single element: \\[\\texttt{dst} (I) = \\texttt{src1} \\,\\texttt{cmpop}\\, \\texttt{src2} (I)\\] When the comparison result is true, the corresponding element of output array is set to 255. The comparison operations can be replaced with the equivalent matrix expressions:

    Mat dst1 = src1 >= src2;
    Mat dst2 = src1 < 8;
    ...

    [checkRange], [min], [max], [threshold]

    Parameters

    • src1: InputArray

      first input array or a scalar; when it is an array, it must have a single channel.

    • src2: InputArray

      second input array or a scalar; when it is an array, it must have a single channel.

    • dst: OutputArray

      output array of type ref CV_8U that has the same size and the same number of channels as the input arrays.

    • cmpop: int

      a flag, that specifies correspondence between the arrays (cv::CmpTypes)

    Returns void

completeSymm

  • completeSymm(m: InputOutputArray, lowerToUpper?: bool): void
  • The function [cv::completeSymm] copies the lower or the upper half of a square matrix to its another half. The matrix diagonal remains unchanged:

    $\\texttt{m}_{ij}=\\texttt{m}_{ji}$ for $i > j$ if lowerToUpper=false $\\texttt{m}_{ij}=\\texttt{m}_{ji}$ for $i < j$ if lowerToUpper=true

    [flip], [transpose]

    Parameters

    • m: InputOutputArray

      input-output floating-point square matrix.

    • Optional lowerToUpper: bool

      operation flag; if true, the lower half is copied to the upper half. Otherwise, the upper half is copied to the lower half.

    Returns void

convertFp16

  • convertFp16(src: InputArray, dst: OutputArray): void
  • This function converts FP32 (single precision floating point) from/to FP16 (half precision floating point). CV_16S format is used to represent FP16 data. There are two use modes (src -> dst): CV_32F -> CV_16S and CV_16S -> CV_32F. The input array has to have type of CV_32F or CV_16S to represent the bit depth. If the input array is neither of them, the function will raise an error. The format of half precision floating point is defined in IEEE 754-2008.

    Parameters

    • src: InputArray

      input array.

    • dst: OutputArray

      output array.

    Returns void

convertScaleAbs

  • convertScaleAbs(src: InputArray, dst: OutputArray, alpha?: double, beta?: double): void
  • On each element of the input array, the function convertScaleAbs performs three operations sequentially: scaling, taking an absolute value, conversion to an unsigned 8-bit type: \\[\\texttt{dst} (I)= \\texttt{saturate\\_cast<uchar>} (| \\texttt{src} (I)* \\texttt{alpha} + \\texttt{beta} |)\\] In case of multi-channel arrays, the function processes each channel independently. When the output is not 8-bit, the operation can be emulated by calling the [Mat::convertTo] method (or by using matrix expressions) and then by calculating an absolute value of the result. For example:

    Mat_<float> A(30,30);
    randu(A, Scalar(-100), Scalar(100));
    Mat_<float> B = A*5 + 3;
    B = abs(B);
    // Mat_<float> B = abs(A*5+3) will also do the job,
    // but it will allocate a temporary matrix

    [Mat::convertTo], cv::abs(const Mat&)

    Parameters

    • src: InputArray

      input array.

    • dst: OutputArray

      output array.

    • Optional alpha: double

      optional scale factor.

    • Optional beta: double

      optional delta added to the scaled values.

    Returns void

copyMakeBorder

  • copyMakeBorder(src: InputArray, dst: OutputArray, top: int, bottom: int, left: int, right: int, borderType: int, value?: any): void
  • The function copies the source image into the middle of the destination image. The areas to the left, to the right, above and below the copied source image will be filled with extrapolated pixels. This is not what filtering functions based on it do (they extrapolate pixels on-fly), but what other more complex functions, including your own, may do to simplify image boundary handling.

    The function supports the mode when src is already in the middle of dst . In this case, the function does not copy src itself but simply constructs the border, for example:

    // let border be the same in all directions
    int border=2;
    // constructs a larger image to fit both the image and the border
    Mat gray_buf(rgb.rows + border*2, rgb.cols + border*2, rgb.depth());
    // select the middle part of it w/o copying data
    Mat gray(gray_canvas, Rect(border, border, rgb.cols, rgb.rows));
    // convert image from RGB to grayscale
    cvtColor(rgb, gray, COLOR_RGB2GRAY);
    // form a border in-place
    copyMakeBorder(gray, gray_buf, border, border,
                   border, border, BORDER_REPLICATE);
    // now do some custom filtering ...
    ...

    When the source image is a part (ROI) of a bigger image, the function will try to use the pixels outside of the ROI to form a border. To disable this feature and always do extrapolation, as if src was not a ROI, use borderType | [BORDER_ISOLATED].

    [borderInterpolate]

    Parameters

    • src: InputArray

      Source image.

    • dst: OutputArray

      Destination image of the same type as src and the size Size(src.cols+left+right, src.rows+top+bottom) .

    • top: int

      the top pixels

    • bottom: int

      the bottom pixels

    • left: int

      the left pixels

    • right: int

      Parameter specifying how many pixels in each direction from the source image rectangle to extrapolate. For example, top=1, bottom=1, left=1, right=1 mean that 1 pixel-wide border needs to be built.

    • borderType: int

      Border type. See borderInterpolate for details.

    • Optional value: any

      Border value if borderType==BORDER_CONSTANT .

    Returns void

copyTo

  • copyTo(src: InputArray, dst: OutputArray, mask: InputArray): void
  • Parameters

    • src: InputArray

      source matrix.

    • dst: OutputArray

      Destination matrix. If it does not have a proper size or type before the operation, it is reallocated.

    • mask: InputArray

      Operation mask of the same size as *this. Its non-zero elements indicate which matrix elements need to be copied. The mask has to be of type CV_8U and can have 1 or multiple channels.

    Returns void

countNonZero

  • countNonZero(src: InputArray): int
  • The function returns the number of non-zero elements in src : \\[\\sum _{I: \\; \\texttt{src} (I) \\ne0 } 1\\]

    [mean], [meanStdDev], [norm], [minMaxLoc], [calcCovarMatrix]

    Parameters

    • src: InputArray

      single-channel array.

    Returns int

dct

  • dct(src: InputArray, dst: OutputArray, flags?: int): void
  • The function [cv::dct] performs a forward or inverse discrete Cosine transform (DCT) of a 1D or 2D floating-point array:

    Forward Cosine transform of a 1D vector of N elements: \\[Y = C^{(N)} \\cdot X\\] where \\[C^{(N)}_{jk}= \\sqrt{\\alpha_j/N} \\cos \\left ( \\frac{\\pi(2k+1)j}{2N} \\right )\\] and $\\alpha_0=1$, $\\alpha_j=2$ for j > 0. Inverse Cosine transform of a 1D vector of N elements: \\[X = \\left (C^{(N)} \\right )^{-1} \\cdot Y = \\left (C^{(N)} \\right )^T \\cdot Y\\] (since $C^{(N)}$ is an orthogonal matrix, $C^{(N)} \\cdot \\left(C^{(N)}\\right)^T = I$ ) Forward 2D Cosine transform of M x N matrix: \\[Y = C^{(N)} \\cdot X \\cdot \\left (C^{(N)} \\right )^T\\] Inverse 2D Cosine transform of M x N matrix: \\[X = \\left (C^{(N)} \\right )^T \\cdot X \\cdot C^{(N)}\\]

    The function chooses the mode of operation by looking at the flags and size of the input array:

    If (flags & [DCT_INVERSE]) == 0 , the function does a forward 1D or 2D transform. Otherwise, it is an inverse 1D or 2D transform. If (flags & [DCT_ROWS]) != 0 , the function performs a 1D transform of each row. If the array is a single column or a single row, the function performs a 1D transform. If none of the above is true, the function performs a 2D transform.

    Currently dct supports even-size arrays (2, 4, 6 ...). For data analysis and approximation, you can pad the array when necessary. Also, the function performance depends very much, and not monotonically, on the array size (see getOptimalDFTSize ). In the current implementation DCT of a vector of size N is calculated via DFT of a vector of size N/2 . Thus, the optimal DCT size N1 >= N can be calculated as:

    size_t getOptimalDCTSize(size_t N) { return 2*getOptimalDFTSize((N+1)/2); }
    N1 = getOptimalDCTSize(N);

    [dft] , [getOptimalDFTSize] , [idct]

    Parameters

    • src: InputArray

      input floating-point array.

    • dst: OutputArray

      output array of the same size and type as src .

    • Optional flags: int

      transformation flags as a combination of cv::DftFlags (DCT_*)

    Returns void

determinant

  • determinant(mtx: InputArray): double
  • The function [cv::determinant] calculates and returns the determinant of the specified matrix. For small matrices ( mtx.cols=mtx.rows<=3 ), the direct method is used. For larger matrices, the function uses LU factorization with partial pivoting.

    For symmetric positively-determined matrices, it is also possible to use eigen decomposition to calculate the determinant.

    [trace], [invert], [solve], [eigen], [MatrixExpressions]

    Parameters

    • mtx: InputArray

      input matrix that must have CV_32FC1 or CV_64FC1 type and square size.

    Returns double

dft

  • dft(src: InputArray, dst: OutputArray, flags?: int, nonzeroRows?: int): void
  • The function [cv::dft] performs one of the following:

    Forward the Fourier transform of a 1D vector of N elements: \\[Y = F^{(N)} \\cdot X,\\] where $F^{(N)}_{jk}=\\exp(-2\\pi i j k/N)$ and $i=\\sqrt{-1}$ Inverse the Fourier transform of a 1D vector of N elements: \\[\\begin{array}{l} X'= \\left (F^{(N)} \\right )^{-1} \\cdot Y = \\left (F^{(N)} \\right )^* \\cdot y \\\\ X = (1/N) \\cdot X, \\end{array}\\] where $F^*=\\left(\\textrm{Re}(F^{(N)})-\\textrm{Im}(F^{(N)})\\right)^T$ Forward the 2D Fourier transform of a M x N matrix: \\[Y = F^{(M)} \\cdot X \\cdot F^{(N)}\\] Inverse the 2D Fourier transform of a M x N matrix: \\[\\begin{array}{l} X'= \\left (F^{(M)} \\right )^* \\cdot Y \\cdot \\left (F^{(N)} \\right )^* \\\\ X = \\frac{1}{M \\cdot N} \\cdot X' \\end{array}\\]

    In case of real (single-channel) data, the output spectrum of the forward Fourier transform or input spectrum of the inverse Fourier transform can be represented in a packed format called CCS (complex-conjugate-symmetrical). It was borrowed from IPL (Intel* Image Processing Library). Here is how 2D CCS spectrum looks: \\[\\begin{bmatrix} Re Y_{0,0} & Re Y_{0,1} & Im Y_{0,1} & Re Y_{0,2} & Im Y_{0,2} & \\cdots & Re Y_{0,N/2-1} & Im Y_{0,N/2-1} & Re Y_{0,N/2} \\\\ Re Y_{1,0} & Re Y_{1,1} & Im Y_{1,1} & Re Y_{1,2} & Im Y_{1,2} & \\cdots & Re Y_{1,N/2-1} & Im Y_{1,N/2-1} & Re Y_{1,N/2} \\\\ Im Y_{1,0} & Re Y_{2,1} & Im Y_{2,1} & Re Y_{2,2} & Im Y_{2,2} & \\cdots & Re Y_{2,N/2-1} & Im Y_{2,N/2-1} & Im Y_{1,N/2} \\\\ \\hdotsfor{9} \\\\ Re Y_{M/2-1,0} & Re Y_{M-3,1} & Im Y_{M-3,1} & \\hdotsfor{3} & Re Y_{M-3,N/2-1} & Im Y_{M-3,N/2-1}& Re Y_{M/2-1,N/2} \\\\ Im Y_{M/2-1,0} & Re Y_{M-2,1} & Im Y_{M-2,1} & \\hdotsfor{3} & Re Y_{M-2,N/2-1} & Im Y_{M-2,N/2-1}& Im Y_{M/2-1,N/2} \\\\ Re Y_{M/2,0} & Re Y_{M-1,1} & Im Y_{M-1,1} & \\hdotsfor{3} & Re Y_{M-1,N/2-1} & Im Y_{M-1,N/2-1}& Re Y_{M/2,N/2} \\end{bmatrix}\\]

    In case of 1D transform of a real vector, the output looks like the first row of the matrix above.

    So, the function chooses an operation mode depending on the flags and size of the input array:

    If [DFT_ROWS] is set or the input array has a single row or single column, the function performs a 1D forward or inverse transform of each row of a matrix when [DFT_ROWS] is set. Otherwise, it performs a 2D transform. If the input array is real and [DFT_INVERSE] is not set, the function performs a forward 1D or 2D transform:

    When [DFT_COMPLEX_OUTPUT] is set, the output is a complex matrix of the same size as input. When [DFT_COMPLEX_OUTPUT] is not set, the output is a real matrix of the same size as input. In case of 2D transform, it uses the packed format as shown above. In case of a single 1D transform, it looks like the first row of the matrix above. In case of multiple 1D transforms (when using the [DFT_ROWS] flag), each row of the output matrix looks like the first row of the matrix above.

    If the input array is complex and either [DFT_INVERSE] or [DFT_REAL_OUTPUT] are not set, the output is a complex array of the same size as input. The function performs a forward or inverse 1D or 2D transform of the whole input array or each row of the input array independently, depending on the flags DFT_INVERSE and DFT_ROWS. When [DFT_INVERSE] is set and the input array is real, or it is complex but [DFT_REAL_OUTPUT] is set, the output is a real array of the same size as input. The function performs a 1D or 2D inverse transformation of the whole input array or each individual row, depending on the flags [DFT_INVERSE] and [DFT_ROWS].

    If [DFT_SCALE] is set, the scaling is done after the transformation.

    Unlike dct , the function supports arrays of arbitrary size. But only those arrays are processed efficiently, whose sizes can be factorized in a product of small prime numbers (2, 3, and 5 in the current implementation). Such an efficient DFT size can be calculated using the getOptimalDFTSize method.

    The sample below illustrates how to calculate a DFT-based convolution of two 2D real arrays:

    void convolveDFT(InputArray A, InputArray B, OutputArray C)
    {
        // reallocate the output array if needed
        C.create(abs(A.rows - B.rows)+1, abs(A.cols - B.cols)+1, A.type());
        Size dftSize;
        // calculate the size of DFT transform
        dftSize.width = getOptimalDFTSize(A.cols + B.cols - 1);
        dftSize.height = getOptimalDFTSize(A.rows + B.rows - 1);
    
        // allocate temporary buffers and initialize them with 0's
        Mat tempA(dftSize, A.type(), Scalar::all(0));
        Mat tempB(dftSize, B.type(), Scalar::all(0));
    
        // copy A and B to the top-left corners of tempA and tempB, respectively
        Mat roiA(tempA, Rect(0,0,A.cols,A.rows));
        A.copyTo(roiA);
        Mat roiB(tempB, Rect(0,0,B.cols,B.rows));
        B.copyTo(roiB);
    
        // now transform the padded A & B in-place;
        // use "nonzeroRows" hint for faster processing
        dft(tempA, tempA, 0, A.rows);
        dft(tempB, tempB, 0, B.rows);
    
        // multiply the spectrums;
        // the function handles packed spectrum representations well
        mulSpectrums(tempA, tempB, tempA);
    
        // transform the product back from the frequency domain.
        // Even though all the result rows will be non-zero,
        // you need only the first C.rows of them, and thus you
        // pass nonzeroRows == C.rows
        dft(tempA, tempA, DFT_INVERSE + DFT_SCALE, C.rows);
    
        // now copy the result back to C.
        tempA(Rect(0, 0, C.cols, C.rows)).copyTo(C);
    
        // all the temporary buffers will be deallocated automatically
    }

    To optimize this sample, consider the following approaches:

    Since nonzeroRows != 0 is passed to the forward transform calls and since A and B are copied to the top-left corners of tempA and tempB, respectively, it is not necessary to clear the whole tempA and tempB. It is only necessary to clear the tempA.cols - A.cols ( tempB.cols - B.cols) rightmost columns of the matrices. This DFT-based convolution does not have to be applied to the whole big arrays, especially if B is significantly smaller than A or vice versa. Instead, you can calculate convolution by parts. To do this, you need to split the output array C into multiple tiles. For each tile, estimate which parts of A and B are required to calculate convolution in this tile. If the tiles in C are too small, the speed will decrease a lot because of repeated work. In the ultimate case, when each tile in C is a single pixel, the algorithm becomes equivalent to the naive convolution algorithm. If the tiles are too big, the temporary arrays tempA and tempB become too big and there is also a slowdown because of bad cache locality. So, there is an optimal tile size somewhere in the middle. If different tiles in C can be calculated in parallel and, thus, the convolution is done by parts, the loop can be threaded.

    All of the above improvements have been implemented in [matchTemplate] and [filter2D] . Therefore, by using them, you can get the performance even better than with the above theoretically optimal implementation. Though, those two functions actually calculate cross-correlation, not convolution, so you need to "flip" the second convolution operand B vertically and horizontally using flip .

    An example using the discrete fourier transform can be found at opencv_source_code/samples/cpp/dft.cpp (Python) An example using the dft functionality to perform Wiener deconvolution can be found at opencv_source/samples/python/deconvolution.py (Python) An example rearranging the quadrants of a Fourier image can be found at opencv_source/samples/python/dft.py

    [dct] , [getOptimalDFTSize] , [mulSpectrums], [filter2D] , [matchTemplate] , [flip] , [cartToPolar] , [magnitude] , [phase]

    Parameters

    • src: InputArray

      input array that could be real or complex.

    • dst: OutputArray

      output array whose size and type depends on the flags .

    • Optional flags: int

      transformation flags, representing a combination of the DftFlags

    • Optional nonzeroRows: int

      when the parameter is not zero, the function assumes that only the first nonzeroRows rows of the input array (DFT_INVERSE is not set) or only the first nonzeroRows of the output array (DFT_INVERSE is set) contain non-zeros, thus, the function can handle the rest of the rows more efficiently and save some time; this technique is very useful for calculating array cross-correlation or convolution using DFT.

    Returns void

divide

  • divide(src1: InputArray, src2: InputArray, dst: OutputArray, scale?: double, dtype?: int): void
  • divide(scale: double, src2: InputArray, dst: OutputArray, dtype?: int): void
  • The function [cv::divide] divides one array by another: \\[\\texttt{dst(I) = saturate(src1(I)*scale/src2(I))}\\] or a scalar by an array when there is no src1 : \\[\\texttt{dst(I) = saturate(scale/src2(I))}\\]

    Different channels of multi-channel arrays are processed independently.

    For integer types when src2(I) is zero, dst(I) will also be zero.

    In case of floating point data there is no special defined behavior for zero src2(I) values. Regular floating-point division is used. Expect correct IEEE-754 behaviour for floating-point data (with NaN, Inf result values).

    Saturation is not applied when the output array has the depth CV_32S. You may even get result of an incorrect sign in the case of overflow.

    [multiply], [add], [subtract]

    Parameters

    • src1: InputArray

      first input array.

    • src2: InputArray

      second input array of the same size and type as src1.

    • dst: OutputArray

      output array of the same size and type as src2.

    • Optional scale: double

      scalar factor.

    • Optional dtype: int

      optional depth of the output array; if -1, dst will have depth src2.depth(), but in case of an array-by-array division, you can only pass -1 when src1.depth()==src2.depth().

    Returns void

  • This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

    Parameters

    • scale: double
    • src2: InputArray
    • dst: OutputArray
    • Optional dtype: int

    Returns void

eigen

  • eigen(src: InputArray, eigenvalues: OutputArray, eigenvectors?: OutputArray): bool
  • The function [cv::eigen] calculates just eigenvalues, or eigenvalues and eigenvectors of the symmetric matrix src:

    src*eigenvectors.row(i).t() = eigenvalues.at<srcType>(i)*eigenvectors.row(i).t()

    Use [cv::eigenNonSymmetric] for calculation of real eigenvalues and eigenvectors of non-symmetric matrix.

    [eigenNonSymmetric], [completeSymm] , [PCA]

    Parameters

    • src: InputArray

      input matrix that must have CV_32FC1 or CV_64FC1 type, square size and be symmetrical (src ^T^ == src).

    • eigenvalues: OutputArray

      output vector of eigenvalues of the same type as src; the eigenvalues are stored in the descending order.

    • Optional eigenvectors: OutputArray

      output matrix of eigenvectors; it has the same size and type as src; the eigenvectors are stored as subsequent matrix rows, in the same order as the corresponding eigenvalues.

    Returns bool

eigenNonSymmetric

  • eigenNonSymmetric(src: InputArray, eigenvalues: OutputArray, eigenvectors: OutputArray): void
  • Assumes real eigenvalues. The function calculates eigenvalues and eigenvectors (optional) of the square matrix src:

    src*eigenvectors.row(i).t() = eigenvalues.at<srcType>(i)*eigenvectors.row(i).t()

    [eigen]

    Parameters

    • src: InputArray

      input matrix (CV_32FC1 or CV_64FC1 type).

    • eigenvalues: OutputArray

      output vector of eigenvalues (type is the same type as src).

    • eigenvectors: OutputArray

      output matrix of eigenvectors (type is the same type as src). The eigenvectors are stored as subsequent matrix rows, in the same order as the corresponding eigenvalues.

    Returns void

exp

  • exp(src: InputArray, dst: OutputArray): void
  • The function [cv::exp] calculates the exponent of every element of the input array: \\[\\texttt{dst} [I] = e^{ src(I) }\\]

    The maximum relative error is about 7e-6 for single-precision input and less than 1e-10 for double-precision input. Currently, the function converts denormalized values to zeros on output. Special values (NaN, Inf) are not handled.

    [log] , [cartToPolar] , [polarToCart] , [phase] , [pow] , [sqrt] , [magnitude]

    Parameters

    • src: InputArray

      input array.

    • dst: OutputArray

      output array of the same size and type as src.

    Returns void

extractChannel

  • extractChannel(src: InputArray, dst: OutputArray, coi: int): void
  • [mixChannels], [split]

    Parameters

    • src: InputArray

      input array

    • dst: OutputArray

      output array

    • coi: int

      index of channel to extract

    Returns void

findNonZero

  • findNonZero(src: InputArray, idx: OutputArray): void
  • Given a binary matrix (likely returned from an operation such as [threshold()], [compare()], >, ==, etc, return all of the non-zero indices as a [cv::Mat] or std::vectorcv::Point (x,y) For example:

    cv::Mat binaryImage; // input, binary image
    cv::Mat locations;   // output, locations of non-zero pixels
    cv::findNonZero(binaryImage, locations);
    
    // access pixel coordinates
    Point pnt = locations.at<Point>(i);

    or

    cv::Mat binaryImage; // input, binary image
    vector<Point> locations;   // output, locations of non-zero pixels
    cv::findNonZero(binaryImage, locations);
    
    // access pixel coordinates
    Point pnt = locations[i];

    Parameters

    • src: InputArray

      single-channel array

    • idx: OutputArray

      the output array, type of cv::Mat or std::vector, corresponding to non-zero indices in the input

    Returns void

flip

  • flip(src: InputArray, dst: OutputArray, flipCode: int): void
  • The function [cv::flip] flips the array in one of three different ways (row and column indices are 0-based): \\[\\texttt{dst} _{ij} = \\left\\{ \\begin{array}{l l} \\texttt{src} _{\\texttt{src.rows}-i-1,j} & if\\; \\texttt{flipCode} = 0 \\\\ \\texttt{src} _{i, \\texttt{src.cols} -j-1} & if\\; \\texttt{flipCode} > 0 \\\\ \\texttt{src} _{ \\texttt{src.rows} -i-1, \\texttt{src.cols} -j-1} & if\\; \\texttt{flipCode} < 0 \\\\ \\end{array} \\right.\\] The example scenarios of using the function are the following: Vertical flipping of the image (flipCode == 0) to switch between top-left and bottom-left image origin. This is a typical operation in video processing on Microsoft Windows* OS. Horizontal flipping of the image with the subsequent horizontal shift and absolute difference calculation to check for a vertical-axis symmetry (flipCode > 0). Simultaneous horizontal and vertical flipping of the image with the subsequent shift and absolute difference calculation to check for a central symmetry (flipCode < 0). Reversing the order of point arrays (flipCode > 0 or flipCode == 0).

    [transpose] , [repeat] , [completeSymm]

    Parameters

    • src: InputArray

      input array.

    • dst: OutputArray

      output array of the same size and type as src.

    • flipCode: int

      a flag to specify how to flip the array; 0 means flipping around the x-axis and positive value (for example, 1) means flipping around y-axis. Negative value (for example, -1) means flipping around both axes.

    Returns void

gemm

  • gemm(src1: InputArray, src2: InputArray, alpha: double, src3: InputArray, beta: double, dst: OutputArray, flags?: int): void
  • The function [cv::gemm] performs generalized matrix multiplication similar to the gemm functions in BLAS level 3. For example, gemm(src1, src2, alpha, src3, beta, dst, GEMM_1_T + GEMM_3_T) corresponds to \\[\\texttt{dst} = \\texttt{alpha} \\cdot \\texttt{src1} ^T \\cdot \\texttt{src2} + \\texttt{beta} \\cdot \\texttt{src3} ^T\\]

    In case of complex (two-channel) data, performed a complex matrix multiplication.

    The function can be replaced with a matrix expression. For example, the above call can be replaced with:

    dst = alpha*src1.t()*src2 + beta*src3.t();

    [mulTransposed] , [transform]

    Parameters

    • src1: InputArray

      first multiplied input matrix that could be real(CV_32FC1, CV_64FC1) or complex(CV_32FC2, CV_64FC2).

    • src2: InputArray

      second multiplied input matrix of the same type as src1.

    • alpha: double

      weight of the matrix product.

    • src3: InputArray

      third optional delta matrix added to the matrix product; it should have the same type as src1 and src2.

    • beta: double

      weight of src3.

    • dst: OutputArray

      output matrix; it has the proper size and the same type as input matrices.

    • Optional flags: int

      operation flags (cv::GemmFlags)

    Returns void

getOptimalDFTSize

  • getOptimalDFTSize(vecsize: int): int
  • DFT performance is not a monotonic function of a vector size. Therefore, when you calculate convolution of two arrays or perform the spectral analysis of an array, it usually makes sense to pad the input data with zeros to get a bit larger array that can be transformed much faster than the original one. Arrays whose size is a power-of-two (2, 4, 8, 16, 32, ...) are the fastest to process. Though, the arrays whose size is a product of 2's, 3's, and 5's (for example, 300 = 55322) are also processed quite efficiently.

    The function [cv::getOptimalDFTSize] returns the minimum number N that is greater than or equal to vecsize so that the DFT of a vector of size N can be processed efficiently. In the current implementation N = 2 ^p^ * 3 ^q^ * 5 ^r^ for some integer p, q, r.

    The function returns a negative number if vecsize is too large (very close to INT_MAX ).

    While the function cannot be used directly to estimate the optimal vector size for DCT transform (since the current DCT implementation supports only even-size vectors), it can be easily processed as getOptimalDFTSize((vecsize+1)/2)*2.

    [dft] , [dct] , [idft] , [idct] , [mulSpectrums]

    Parameters

    • vecsize: int

      vector size.

    Returns int

hconcat

  • hconcat(src: any, nsrc: size_t, dst: OutputArray): void
  • hconcat(src1: InputArray, src2: InputArray, dst: OutputArray): void
  • hconcat(src: InputArrayOfArrays, dst: OutputArray): void
  • The function horizontally concatenates two or more [cv::Mat] matrices (with the same number of rows).

    cv::Mat matArray[] = { cv::Mat(4, 1, CV_8UC1, cv::Scalar(1)),
                           cv::Mat(4, 1, CV_8UC1, cv::Scalar(2)),
                           cv::Mat(4, 1, CV_8UC1, cv::Scalar(3)),};
    
    cv::Mat out;
    cv::hconcat( matArray, 3, out );
    //out:
    //[1, 2, 3;
    // 1, 2, 3;
    // 1, 2, 3;
    // 1, 2, 3]

    [cv::vconcat(const Mat*, size_t, OutputArray)],

    [cv::vconcat(InputArrayOfArrays, OutputArray)] and

    [cv::vconcat(InputArray, InputArray, OutputArray)]

    Parameters

    • src: any

      input array or vector of matrices. all of the matrices must have the same number of rows and the same depth.

    • nsrc: size_t

      number of matrices in src.

    • dst: OutputArray

      output array. It has the same number of rows and depth as the src, and the sum of cols of the src.

    Returns void

  • This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

    cv::Mat_<float> A = (cv::Mat_<float>(3, 2) << 1, 4,
                                                  2, 5,
                                                  3, 6);
    cv::Mat_<float> B = (cv::Mat_<float>(3, 2) << 7, 10,
                                                  8, 11,
                                                  9, 12);
    
    cv::Mat C;
    cv::hconcat(A, B, C);
    //C:
    //[1, 4, 7, 10;
    // 2, 5, 8, 11;
    // 3, 6, 9, 12]

    Parameters

    • src1: InputArray

      first input array to be considered for horizontal concatenation.

    • src2: InputArray

      second input array to be considered for horizontal concatenation.

    • dst: OutputArray

      output array. It has the same number of rows and depth as the src1 and src2, and the sum of cols of the src1 and src2.

    Returns void

  • This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

    std::vector<cv::Mat> matrices = { cv::Mat(4, 1, CV_8UC1, cv::Scalar(1)),
                                      cv::Mat(4, 1, CV_8UC1, cv::Scalar(2)),
                                      cv::Mat(4, 1, CV_8UC1, cv::Scalar(3)),};
    
    cv::Mat out;
    cv::hconcat( matrices, out );
    //out:
    //[1, 2, 3;
    // 1, 2, 3;
    // 1, 2, 3;
    // 1, 2, 3]

    Parameters

    • src: InputArrayOfArrays

      input array or vector of matrices. all of the matrices must have the same number of rows and the same depth.

    • dst: OutputArray

      output array. It has the same number of rows and depth as the src, and the sum of cols of the src. same depth.

    Returns void

idct

  • idct(src: InputArray, dst: OutputArray, flags?: int): void
  • idct(src, dst, flags) is equivalent to dct(src, dst, flags | DCT_INVERSE).

    [dct], [dft], [idft], [getOptimalDFTSize]

    Parameters

    • src: InputArray

      input floating-point single-channel array.

    • dst: OutputArray

      output array of the same size and type as src.

    • Optional flags: int

      operation flags.

    Returns void

idft

  • idft(src: InputArray, dst: OutputArray, flags?: int, nonzeroRows?: int): void
  • idft(src, dst, flags) is equivalent to dft(src, dst, flags | [DFT_INVERSE]) .

    None of dft and idft scales the result by default. So, you should pass [DFT_SCALE] to one of dft or idft explicitly to make these transforms mutually inverse.

    [dft], [dct], [idct], [mulSpectrums], [getOptimalDFTSize]

    Parameters

    • src: InputArray

      input floating-point real or complex array.

    • dst: OutputArray

      output array whose size and type depend on the flags.

    • Optional flags: int

      operation flags (see dft and DftFlags).

    • Optional nonzeroRows: int

      number of dst rows to process; the rest of the rows have undefined content (see the convolution sample in dft description.

    Returns void

inRange

  • inRange(src: InputArray, lowerb: InputArray, upperb: InputArray, dst: OutputArray): void
  • The function checks the range as follows:

    For every element of a single-channel input array: \\[\\texttt{dst} (I)= \\texttt{lowerb} (I)_0 \\leq \\texttt{src} (I)_0 \\leq \\texttt{upperb} (I)_0\\] For two-channel arrays: \\[\\texttt{dst} (I)= \\texttt{lowerb} (I)_0 \\leq \\texttt{src} (I)_0 \\leq \\texttt{upperb} (I)_0 \\land \\texttt{lowerb} (I)_1 \\leq \\texttt{src} (I)_1 \\leq \\texttt{upperb} (I)_1\\] and so forth.

    That is, dst (I) is set to 255 (all 1 -bits) if src (I) is within the specified 1D, 2D, 3D, ... box and 0 otherwise.

    When the lower and/or upper boundary parameters are scalars, the indexes (I) at lowerb and upperb in the above formulas should be omitted.

    Parameters

    • src: InputArray

      first input array.

    • lowerb: InputArray

      inclusive lower boundary array or a scalar.

    • upperb: InputArray

      inclusive upper boundary array or a scalar.

    • dst: OutputArray

      output array of the same size as src and CV_8U type.

    Returns void

insertChannel

  • insertChannel(src: InputArray, dst: InputOutputArray, coi: int): void
  • [mixChannels], [merge]

    Parameters

    • src: InputArray

      input array

    • dst: InputOutputArray

      output array

    • coi: int

      index of channel for insertion

    Returns void

invert

  • invert(src: InputArray, dst: OutputArray, flags?: int): double
  • The function [cv::invert] inverts the matrix src and stores the result in dst . When the matrix src is singular or non-square, the function calculates the pseudo-inverse matrix (the dst matrix) so that norm(src*dst - I) is minimal, where I is an identity matrix.

    In case of the [DECOMP_LU] method, the function returns non-zero value if the inverse has been successfully calculated and 0 if src is singular.

    In case of the [DECOMP_SVD] method, the function returns the inverse condition number of src (the ratio of the smallest singular value to the largest singular value) and 0 if src is singular. The [SVD] method calculates a pseudo-inverse matrix if src is singular.

    Similarly to [DECOMP_LU], the method [DECOMP_CHOLESKY] works only with non-singular square matrices that should also be symmetrical and positively defined. In this case, the function stores the inverted matrix in dst and returns non-zero. Otherwise, it returns 0.

    [solve], [SVD]

    Parameters

    • src: InputArray

      input floating-point M x N matrix.

    • dst: OutputArray

      output matrix of N x M size and the same type as src.

    • Optional flags: int

      inversion method (cv::DecompTypes)

    Returns double

log

  • log(src: InputArray, dst: OutputArray): void
  • The function [cv::log] calculates the natural logarithm of every element of the input array: \\[\\texttt{dst} (I) = \\log (\\texttt{src}(I)) \\]

    Output on zero, negative and special (NaN, Inf) values is undefined.

    [exp], [cartToPolar], [polarToCart], [phase], [pow], [sqrt], [magnitude]

    Parameters

    • src: InputArray

      input array.

    • dst: OutputArray

      output array of the same size and type as src .

    Returns void

magnitude

  • magnitude(x: InputArray, y: InputArray, magnitude: OutputArray): void
  • The function [cv::magnitude] calculates the magnitude of 2D vectors formed from the corresponding elements of x and y arrays: \\[\\texttt{dst} (I) = \\sqrt{\\texttt{x}(I)^2 + \\texttt{y}(I)^2}\\]

    [cartToPolar], [polarToCart], [phase], [sqrt]

    Parameters

    • x: InputArray

      floating-point array of x-coordinates of the vectors.

    • y: InputArray

      floating-point array of y-coordinates of the vectors; it must have the same size as x.

    • magnitude: OutputArray

      output array of the same size and type as x.

    Returns void

max

  • max(src1: InputArray, src2: InputArray, dst: OutputArray): void
  • max(src1: any, src2: any, dst: any): void
  • max(src1: any, src2: any, dst: any): void
  • The function [cv::max] calculates the per-element maximum of two arrays: \\[\\texttt{dst} (I)= \\max ( \\texttt{src1} (I), \\texttt{src2} (I))\\] or array and a scalar: \\[\\texttt{dst} (I)= \\max ( \\texttt{src1} (I), \\texttt{value} )\\]

    [min], [compare], [inRange], [minMaxLoc], [MatrixExpressions]

    Parameters

    • src1: InputArray

      first input array.

    • src2: InputArray

      second input array of the same size and type as src1 .

    • dst: OutputArray

      output array of the same size and type as src1.

    Returns void

  • This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts. needed to avoid conflicts with const _Tp& std::min(const _Tp&, const _Tp&, _Compare)

    Parameters

    • src1: any
    • src2: any
    • dst: any

    Returns void

  • This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts. needed to avoid conflicts with const _Tp& std::min(const _Tp&, const _Tp&, _Compare)

    Parameters

    • src1: any
    • src2: any
    • dst: any

    Returns void

mean

  • mean(src: InputArray, mask?: InputArray): Scalar
  • The function [cv::mean] calculates the mean value M of array elements, independently for each channel, and return it: \\[\\begin{array}{l} N = \\sum _{I: \\; \\texttt{mask} (I) \\ne 0} 1 \\\\ M_c = \\left ( \\sum _{I: \\; \\texttt{mask} (I) \\ne 0}{ \\texttt{mtx} (I)_c} \\right )/N \\end{array}\\] When all the mask elements are 0's, the function returns Scalar::all(0)

    [countNonZero], [meanStdDev], [norm], [minMaxLoc]

    Parameters

    • src: InputArray

      input array that should have from 1 to 4 channels so that the result can be stored in Scalar_ .

    • Optional mask: InputArray

      optional operation mask.

    Returns Scalar

meanStdDev

  • meanStdDev(src: InputArray, mean: OutputArray, stddev: OutputArray, mask?: InputArray): void
  • Calculates a mean and standard deviation of array elements.

    The function [cv::meanStdDev] calculates the mean and the standard deviation M of array elements independently for each channel and returns it via the output parameters: \\[\\begin{array}{l} N = \\sum _{I, \\texttt{mask} (I) \\ne 0} 1 \\\\ \\texttt{mean} _c = \\frac{\\sum_{ I: \\; \\texttt{mask}(I) \\ne 0} \\texttt{src} (I)_c}{N} \\\\ \\texttt{stddev} _c = \\sqrt{\\frac{\\sum_{ I: \\; \\texttt{mask}(I) \\ne 0} \\left ( \\texttt{src} (I)_c - \\texttt{mean} _c \\right )^2}{N}} \\end{array}\\] When all the mask elements are 0's, the function returns mean=stddev=Scalar::all(0).

    The calculated standard deviation is only the diagonal of the complete normalized covariance matrix. If the full matrix is needed, you can reshape the multi-channel array M x N to the single-channel array M*N x mtx.channels() (only possible when the matrix is continuous) and then pass the matrix to calcCovarMatrix .

    [countNonZero], [mean], [norm], [minMaxLoc], [calcCovarMatrix]

    Parameters

    • src: InputArray

      input array that should have from 1 to 4 channels so that the results can be stored in Scalar_ 's.

    • mean: OutputArray

      output parameter: calculated mean value.

    • stddev: OutputArray

      output parameter: calculated standard deviation.

    • Optional mask: InputArray

      optional operation mask.

    Returns void

merge

  • merge(mv: any, count: size_t, dst: OutputArray): void
  • merge(mv: InputArrayOfArrays, dst: OutputArray): void
  • The function [cv::merge] merges several arrays to make a single multi-channel array. That is, each element of the output array will be a concatenation of the elements of the input arrays, where elements of i-th input array are treated as mv[i].channels()-element vectors.

    The function [cv::split] does the reverse operation. If you need to shuffle channels in some other advanced way, use [cv::mixChannels].

    The following example shows how to merge 3 single channel matrices into a single 3-channel matrix.

        Mat m1 = (Mat_<uchar>(2,2) << 1,4,7,10);
        Mat m2 = (Mat_<uchar>(2,2) << 2,5,8,11);
        Mat m3 = (Mat_<uchar>(2,2) << 3,6,9,12);
    
        Mat channels[3] = {m1, m2, m3};
        Mat m;
        merge(channels, 3, m);
        /*
        m =
        [  1,   2,   3,   4,   5,   6;
           7,   8,   9,  10,  11,  12]
        m.channels() = 3
    \/

    [mixChannels], [split], [Mat::reshape]

    Parameters

    • mv: any

      input array of matrices to be merged; all the matrices in mv must have the same size and the same depth.

    • count: size_t

      number of input matrices when mv is a plain C array; it must be greater than zero.

    • dst: OutputArray

      output array of the same size and the same depth as mv[0]; The number of channels will be equal to the parameter count.

    Returns void

  • This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

    Parameters

    • mv: InputArrayOfArrays

      input vector of matrices to be merged; all the matrices in mv must have the same size and the same depth.

    • dst: OutputArray

      output array of the same size and the same depth as mv[0]; The number of channels will be the total number of channels in the matrix array.

    Returns void

min

  • min(src1: InputArray, src2: InputArray, dst: OutputArray): void
  • min(src1: any, src2: any, dst: any): void
  • min(src1: any, src2: any, dst: any): void
  • The function [cv::min] calculates the per-element minimum of two arrays: \\[\\texttt{dst} (I)= \\min ( \\texttt{src1} (I), \\texttt{src2} (I))\\] or array and a scalar: \\[\\texttt{dst} (I)= \\min ( \\texttt{src1} (I), \\texttt{value} )\\]

    [max], [compare], [inRange], [minMaxLoc]

    Parameters

    • src1: InputArray

      first input array.

    • src2: InputArray

      second input array of the same size and type as src1.

    • dst: OutputArray

      output array of the same size and type as src1.

    Returns void

  • This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts. needed to avoid conflicts with const _Tp& std::min(const _Tp&, const _Tp&, _Compare)

    Parameters

    • src1: any
    • src2: any
    • dst: any

    Returns void

  • This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts. needed to avoid conflicts with const _Tp& std::min(const _Tp&, const _Tp&, _Compare)

    Parameters

    • src1: any
    • src2: any
    • dst: any

    Returns void

minMaxIdx

  • minMaxIdx(src: InputArray, minVal: any, maxVal?: any, minIdx?: any, maxIdx?: any, mask?: InputArray): void
  • The function [cv::minMaxIdx] finds the minimum and maximum element values and their positions. The extremums are searched across the whole array or, if mask is not an empty array, in the specified array region. The function does not work with multi-channel arrays. If you need to find minimum or maximum elements across all the channels, use [Mat::reshape] first to reinterpret the array as single-channel. Or you may extract the particular channel using either extractImageCOI , or mixChannels , or split . In case of a sparse matrix, the minimum is found among non-zero elements only.

    When minIdx is not NULL, it must have at least 2 elements (as well as maxIdx), even if src is a single-row or single-column matrix. In OpenCV (following MATLAB) each array has at least 2 dimensions, i.e. single-column matrix is Mx1 matrix (and therefore minIdx/maxIdx will be (i1,0)/(i2,0)) and single-row matrix is 1xN matrix (and therefore minIdx/maxIdx will be (0,j1)/(0,j2)).

    Parameters

    • src: InputArray

      input single-channel array.

    • minVal: any

      pointer to the returned minimum value; NULL is used if not required.

    • Optional maxVal: any

      pointer to the returned maximum value; NULL is used if not required.

    • Optional minIdx: any

      pointer to the returned minimum location (in nD case); NULL is used if not required; Otherwise, it must point to an array of src.dims elements, the coordinates of the minimum element in each dimension are stored there sequentially.

    • Optional maxIdx: any

      pointer to the returned maximum location (in nD case). NULL is used if not required.

    • Optional mask: InputArray

      specified array region

    Returns void

minMaxLoc

  • minMaxLoc(src: InputArray, minVal: any, maxVal?: any, minLoc?: any, maxLoc?: any, mask?: InputArray): void
  • minMaxLoc(a: any, minVal: any, maxVal: any, minIdx?: any, maxIdx?: any): void
  • The function [cv::minMaxLoc] finds the minimum and maximum element values and their positions. The extremums are searched across the whole array or, if mask is not an empty array, in the specified array region.

    The function do not work with multi-channel arrays. If you need to find minimum or maximum elements across all the channels, use [Mat::reshape] first to reinterpret the array as single-channel. Or you may extract the particular channel using either extractImageCOI , or mixChannels , or split .

    [max], [min], [compare], [inRange], extractImageCOI, [mixChannels], [split], [Mat::reshape]

    Parameters

    • src: InputArray

      input single-channel array.

    • minVal: any

      pointer to the returned minimum value; NULL is used if not required.

    • Optional maxVal: any

      pointer to the returned maximum value; NULL is used if not required.

    • Optional minLoc: any

      pointer to the returned minimum location (in 2D case); NULL is used if not required.

    • Optional maxLoc: any

      pointer to the returned maximum location (in 2D case); NULL is used if not required.

    • Optional mask: InputArray

      optional mask used to select a sub-array.

    Returns void

  • This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

    Parameters

    • a: any

      input single-channel array.

    • minVal: any

      pointer to the returned minimum value; NULL is used if not required.

    • maxVal: any

      pointer to the returned maximum value; NULL is used if not required.

    • Optional minIdx: any

      pointer to the returned minimum location (in nD case); NULL is used if not required; Otherwise, it must point to an array of src.dims elements, the coordinates of the minimum element in each dimension are stored there sequentially.

    • Optional maxIdx: any

      pointer to the returned maximum location (in nD case). NULL is used if not required.

    Returns void

mixChannels

  • mixChannels(src: any, nsrcs: size_t, dst: any, ndsts: size_t, fromTo: any, npairs: size_t): void
  • mixChannels(src: InputArrayOfArrays, dst: InputOutputArrayOfArrays, fromTo: any, npairs: size_t): void
  • mixChannels(src: InputArrayOfArrays, dst: InputOutputArrayOfArrays, fromTo: any): void
  • The function [cv::mixChannels] provides an advanced mechanism for shuffling image channels.

    [cv::split],[cv::merge],[cv::extractChannel],[cv::insertChannel] and some forms of [cv::cvtColor] are partial cases of [cv::mixChannels].

    In the example below, the code splits a 4-channel BGRA image into a 3-channel BGR (with B and R channels swapped) and a separate alpha-channel image:

    Mat bgra( 100, 100, CV_8UC4, Scalar(255,0,0,255) );
    Mat bgr( bgra.rows, bgra.cols, CV_8UC3 );
    Mat alpha( bgra.rows, bgra.cols, CV_8UC1 );
    
    // forming an array of matrices is a quite efficient operation,
    // because the matrix data is not copied, only the headers
    Mat out[] = { bgr, alpha };
    // bgra[0] -> bgr[2], bgra[1] -> bgr[1],
    // bgra[2] -> bgr[0], bgra[3] -> alpha[0]
    int from_to[] = { 0,2, 1,1, 2,0, 3,3 };
    mixChannels( &bgra, 1, out, 2, from_to, 4 );

    Unlike many other new-style C++ functions in OpenCV (see the introduction section and [Mat::create] ), [cv::mixChannels] requires the output arrays to be pre-allocated before calling the function.

    [split], [merge], [extractChannel], [insertChannel], [cvtColor]

    Parameters

    • src: any

      input array or vector of matrices; all of the matrices must have the same size and the same depth.

    • nsrcs: size_t

      number of matrices in src.

    • dst: any

      output array or vector of matrices; all the matrices must be allocated; their size and depth must be the same as in src[0].

    • ndsts: size_t

      number of matrices in dst.

    • fromTo: any

      array of index pairs specifying which channels are copied and where; fromTo[k2] is a 0-based index of the input channel in src, fromTo[k2+1] is an index of the output channel in dst; the continuous channel numbering is used: the first input image channels are indexed from 0 to src[0].channels()-1, the second input image channels are indexed from src[0].channels() to src[0].channels() + src[1].channels()-1, and so on, the same scheme is used for the output image channels; as a special case, when fromTo[k*2] is negative, the corresponding output channel is filled with zero .

    • npairs: size_t

      number of index pairs in fromTo.

    Returns void

  • This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

    Parameters

    • src: InputArrayOfArrays

      input array or vector of matrices; all of the matrices must have the same size and the same depth.

    • dst: InputOutputArrayOfArrays

      output array or vector of matrices; all the matrices must be allocated; their size and depth must be the same as in src[0].

    • fromTo: any

      array of index pairs specifying which channels are copied and where; fromTo[k2] is a 0-based index of the input channel in src, fromTo[k2+1] is an index of the output channel in dst; the continuous channel numbering is used: the first input image channels are indexed from 0 to src[0].channels()-1, the second input image channels are indexed from src[0].channels() to src[0].channels() + src[1].channels()-1, and so on, the same scheme is used for the output image channels; as a special case, when fromTo[k*2] is negative, the corresponding output channel is filled with zero .

    • npairs: size_t

      number of index pairs in fromTo.

    Returns void

  • This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

    Parameters

    • src: InputArrayOfArrays

      input array or vector of matrices; all of the matrices must have the same size and the same depth.

    • dst: InputOutputArrayOfArrays

      output array or vector of matrices; all the matrices must be allocated; their size and depth must be the same as in src[0].

    • fromTo: any

      array of index pairs specifying which channels are copied and where; fromTo[k2] is a 0-based index of the input channel in src, fromTo[k2+1] is an index of the output channel in dst; the continuous channel numbering is used: the first input image channels are indexed from 0 to src[0].channels()-1, the second input image channels are indexed from src[0].channels() to src[0].channels() + src[1].channels()-1, and so on, the same scheme is used for the output image channels; as a special case, when fromTo[k*2] is negative, the corresponding output channel is filled with zero .

    Returns void

mulSpectrums

  • mulSpectrums(a: InputArray, b: InputArray, c: OutputArray, flags: int, conjB?: bool): void
  • The function [cv::mulSpectrums] performs the per-element multiplication of the two CCS-packed or complex matrices that are results of a real or complex Fourier transform.

    The function, together with dft and idft , may be used to calculate convolution (pass conjB=false ) or correlation (pass conjB=true ) of two arrays rapidly. When the arrays are complex, they are simply multiplied (per element) with an optional conjugation of the second-array elements. When the arrays are real, they are assumed to be CCS-packed (see dft for details).

    Parameters

    • a: InputArray

      first input array.

    • b: InputArray

      second input array of the same size and type as src1 .

    • c: OutputArray

      output array of the same size and type as src1 .

    • flags: int

      operation flags; currently, the only supported flag is cv::DFT_ROWS, which indicates that each row of src1 and src2 is an independent 1D Fourier spectrum. If you do not want to use this flag, then simply add a 0 as value.

    • Optional conjB: bool

      optional flag that conjugates the second input array before the multiplication (true) or not (false).

    Returns void

mulTransposed

  • mulTransposed(src: InputArray, dst: OutputArray, aTa: bool, delta?: InputArray, scale?: double, dtype?: int): void
  • The function [cv::mulTransposed] calculates the product of src and its transposition: \\[\\texttt{dst} = \\texttt{scale} ( \\texttt{src} - \\texttt{delta} )^T ( \\texttt{src} - \\texttt{delta} )\\] if aTa=true , and \\[\\texttt{dst} = \\texttt{scale} ( \\texttt{src} - \\texttt{delta} ) ( \\texttt{src} - \\texttt{delta} )^T\\] otherwise. The function is used to calculate the covariance matrix. With zero delta, it can be used as a faster substitute for general matrix product A*B when B=A'

    [calcCovarMatrix], [gemm], [repeat], [reduce]

    Parameters

    • src: InputArray

      input single-channel matrix. Note that unlike gemm, the function can multiply not only floating-point matrices.

    • dst: OutputArray

      output square matrix.

    • aTa: bool

      Flag specifying the multiplication ordering. See the description below.

    • Optional delta: InputArray

      Optional delta matrix subtracted from src before the multiplication. When the matrix is empty ( delta=noArray() ), it is assumed to be zero, that is, nothing is subtracted. If it has the same size as src , it is simply subtracted. Otherwise, it is "repeated" (see repeat ) to cover the full src and then subtracted. Type of the delta matrix, when it is not empty, must be the same as the type of created output matrix. See the dtype parameter description below.

    • Optional scale: double

      Optional scale factor for the matrix product.

    • Optional dtype: int

      Optional type of the output matrix. When it is negative, the output matrix will have the same type as src . Otherwise, it will be type=CV_MAT_DEPTH(dtype) that should be either CV_32F or CV_64F .

    Returns void

multiply

  • multiply(src1: InputArray, src2: InputArray, dst: OutputArray, scale?: double, dtype?: int): void
  • The function multiply calculates the per-element product of two arrays:

    \\[\\texttt{dst} (I)= \\texttt{saturate} ( \\texttt{scale} \\cdot \\texttt{src1} (I) \\cdot \\texttt{src2} (I))\\]

    There is also a [MatrixExpressions] -friendly variant of the first function. See [Mat::mul] .

    For a not-per-element matrix product, see gemm .

    Saturation is not applied when the output array has the depth CV_32S. You may even get result of an incorrect sign in the case of overflow.

    [add], [subtract], [divide], [scaleAdd], [addWeighted], [accumulate], [accumulateProduct], [accumulateSquare], [Mat::convertTo]

    Parameters

    • src1: InputArray

      first input array.

    • src2: InputArray

      second input array of the same size and the same type as src1.

    • dst: OutputArray

      output array of the same size and type as src1.

    • Optional scale: double

      optional scale factor.

    • Optional dtype: int

      optional depth of the output array

    Returns void

norm

  • norm(src1: InputArray, normType?: int, mask?: InputArray): double
  • norm(src1: InputArray, src2: InputArray, normType?: int, mask?: InputArray): double
  • norm(src: any, normType: int): double
  • This version of [norm] calculates the absolute norm of src1. The type of norm to calculate is specified using [NormTypes].

    As example for one array consider the function $r(x)= \\begin{pmatrix} x \\\\ 1-x \\end{pmatrix}, x \\in [-1;1]$. The $ L_{1}, L_{2} $ and $ L_{\\infty} $ norm for the sample value $r(-1) = \\begin{pmatrix} -1 \\\\ 2 \\end{pmatrix}$ is calculated as follows \\begin{align*} \\| r(-1) \\|_{L_1} &= |-1| + |2| = 3 \\\\ \\| r(-1) \\|_{L_2} &= \\sqrt{(-1)^{2} + (2)^{2}} = \\sqrt{5} \\\\ \\| r(-1) \\|_{L_\\infty} &= \\max(|-1|,|2|) = 2 \\end{align*} and for $r(0.5) = \\begin{pmatrix} 0.5 \\\\ 0.5 \\end{pmatrix}$ the calculation is \\begin{align*} \\| r(0.5) \\|_{L_1} &= |0.5| + |0.5| = 1 \\\\ \\| r(0.5) \\|_{L_2} &= \\sqrt{(0.5)^{2} + (0.5)^{2}} = \\sqrt{0.5} \\\\ \\| r(0.5) \\|_{L_\\infty} &= \\max(|0.5|,|0.5|) = 0.5. \\end{align*} The following graphic shows all values for the three norm functions $\\| r(x) \\|_{L_1}, \\| r(x) \\|_{L_2}$ and $\\| r(x) \\|_{L_\\infty}$. It is notable that the $ L_{1} $ norm forms the upper and the $ L_{\\infty} $ norm forms the lower border for the example function $ r(x) $. When the mask parameter is specified and it is not empty, the norm is

    If normType is not specified, [NORM_L2] is used. calculated only over the region specified by the mask.

    Multi-channel input arrays are treated as single-channel arrays, that is, the results for all channels are combined.

    [Hamming] norms can only be calculated with CV_8U depth arrays.

    Parameters

    • src1: InputArray

      first input array.

    • Optional normType: int

      type of the norm (see NormTypes).

    • Optional mask: InputArray

      optional operation mask; it must have the same size as src1 and CV_8UC1 type.

    Returns double

  • This version of [cv::norm] calculates the absolute difference norm or the relative difference norm of arrays src1 and src2. The type of norm to calculate is specified using [NormTypes].

    Parameters

    • src1: InputArray

      first input array.

    • src2: InputArray

      second input array of the same size and the same type as src1.

    • Optional normType: int

      type of the norm (see NormTypes).

    • Optional mask: InputArray

      optional operation mask; it must have the same size as src1 and CV_8UC1 type.

    Returns double

  • This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

    Parameters

    • src: any

      first input array.

    • normType: int

      type of the norm (see NormTypes).

    Returns double

normalize

  • normalize(src: InputArray, dst: InputOutputArray, alpha?: double, beta?: double, norm_type?: int, dtype?: int, mask?: InputArray): void
  • normalize(src: any, dst: any, alpha: double, normType: int): void
  • The function [cv::normalize] normalizes scale and shift the input array elements so that \\[\\| \\texttt{dst} \\| _{L_p}= \\texttt{alpha}\\] (where p=Inf, 1 or 2) when normType=NORM_INF, NORM_L1, or NORM_L2, respectively; or so that \\[\\min _I \\texttt{dst} (I)= \\texttt{alpha} , \\, \\, \\max _I \\texttt{dst} (I)= \\texttt{beta}\\]

    when normType=NORM_MINMAX (for dense arrays only). The optional mask specifies a sub-array to be normalized. This means that the norm or min-n-max are calculated over the sub-array, and then this sub-array is modified to be normalized. If you want to only use the mask to calculate the norm or min-max but modify the whole array, you can use norm and [Mat::convertTo].

    In case of sparse matrices, only the non-zero values are analyzed and transformed. Because of this, the range transformation for sparse matrices is not allowed since it can shift the zero level.

    Possible usage with some positive example data:

    vector<double> positiveData = { 2.0, 8.0, 10.0 };
    vector<double> normalizedData_l1, normalizedData_l2, normalizedData_inf, normalizedData_minmax;
    
    // Norm to probability (total count)
    // sum(numbers) = 20.0
    // 2.0      0.1     (2.0/20.0)
    // 8.0      0.4     (8.0/20.0)
    // 10.0     0.5     (10.0/20.0)
    normalize(positiveData, normalizedData_l1, 1.0, 0.0, NORM_L1);
    
    // Norm to unit vector: ||positiveData|| = 1.0
    // 2.0      0.15
    // 8.0      0.62
    // 10.0     0.77
    normalize(positiveData, normalizedData_l2, 1.0, 0.0, NORM_L2);
    
    // Norm to max element
    // 2.0      0.2     (2.0/10.0)
    // 8.0      0.8     (8.0/10.0)
    // 10.0     1.0     (10.0/10.0)
    normalize(positiveData, normalizedData_inf, 1.0, 0.0, NORM_INF);
    
    // Norm to range [0.0;1.0]
    // 2.0      0.0     (shift to left border)
    // 8.0      0.75    (6.0/8.0)
    // 10.0     1.0     (shift to right border)
    normalize(positiveData, normalizedData_minmax, 1.0, 0.0, NORM_MINMAX);

    [norm], [Mat::convertTo], [SparseMat::convertTo]

    Parameters

    • src: InputArray

      input array.

    • dst: InputOutputArray

      output array of the same size as src .

    • Optional alpha: double

      norm value to normalize to or the lower range boundary in case of the range normalization.

    • Optional beta: double

      upper range boundary in case of the range normalization; it is not used for the norm normalization.

    • Optional norm_type: int

      normalization type (see cv::NormTypes).

    • Optional dtype: int

      when negative, the output array has the same type as src; otherwise, it has the same number of channels as src and the depth =CV_MAT_DEPTH(dtype).

    • Optional mask: InputArray

      optional operation mask.

    Returns void

  • This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

    Parameters

    • src: any

      input array.

    • dst: any

      output array of the same size as src .

    • alpha: double

      norm value to normalize to or the lower range boundary in case of the range normalization.

    • normType: int

      normalization type (see cv::NormTypes).

    Returns void

patchNaNs

  • patchNaNs(a: InputOutputArray, val?: double): void

perspectiveTransform

  • perspectiveTransform(src: InputArray, dst: OutputArray, m: InputArray): void
  • The function [cv::perspectiveTransform] transforms every element of src by treating it as a 2D or 3D vector, in the following way: \\[(x, y, z) \\rightarrow (x'/w, y'/w, z'/w)\\] where \\[(x', y', z', w') = \\texttt{mat} \\cdot \\begin{bmatrix} x & y & z & 1 \\end{bmatrix}\\] and \\[w = \\fork{w'}{if \\(w' \\ne 0\\)}{\\infty}{otherwise}\\]

    Here a 3D vector transformation is shown. In case of a 2D vector transformation, the z component is omitted.

    The function transforms a sparse set of 2D or 3D vectors. If you want to transform an image using perspective transformation, use warpPerspective . If you have an inverse problem, that is, you want to compute the most probable perspective transformation out of several pairs of corresponding points, you can use getPerspectiveTransform or findHomography .

    [transform], [warpPerspective], [getPerspectiveTransform], [findHomography]

    Parameters

    • src: InputArray

      input two-channel or three-channel floating-point array; each element is a 2D/3D vector to be transformed.

    • dst: OutputArray

      output array of the same size and type as src.

    • m: InputArray

      3x3 or 4x4 floating-point transformation matrix.

    Returns void

phase

  • phase(x: InputArray, y: InputArray, angle: OutputArray, angleInDegrees?: bool): void
  • The function [cv::phase] calculates the rotation angle of each 2D vector that is formed from the corresponding elements of x and y : \\[\\texttt{angle} (I) = \\texttt{atan2} ( \\texttt{y} (I), \\texttt{x} (I))\\]

    The angle estimation accuracy is about 0.3 degrees. When x(I)=y(I)=0 , the corresponding angle(I) is set to 0.

    Parameters

    • x: InputArray

      input floating-point array of x-coordinates of 2D vectors.

    • y: InputArray

      input array of y-coordinates of 2D vectors; it must have the same size and the same type as x.

    • angle: OutputArray

      output array of vector angles; it has the same size and same type as x .

    • Optional angleInDegrees: bool

      when true, the function calculates the angle in degrees, otherwise, they are measured in radians.

    Returns void

polarToCart

  • polarToCart(magnitude: InputArray, angle: InputArray, x: OutputArray, y: OutputArray, angleInDegrees?: bool): void
  • The function [cv::polarToCart] calculates the Cartesian coordinates of each 2D vector represented by the corresponding elements of magnitude and angle: \\[\\begin{array}{l} \\texttt{x} (I) = \\texttt{magnitude} (I) \\cos ( \\texttt{angle} (I)) \\\\ \\texttt{y} (I) = \\texttt{magnitude} (I) \\sin ( \\texttt{angle} (I)) \\\\ \\end{array}\\]

    The relative accuracy of the estimated coordinates is about 1e-6.

    [cartToPolar], [magnitude], [phase], [exp], [log], [pow], [sqrt]

    Parameters

    • magnitude: InputArray

      input floating-point array of magnitudes of 2D vectors; it can be an empty matrix (=Mat()), in this case, the function assumes that all the magnitudes are =1; if it is not empty, it must have the same size and type as angle.

    • angle: InputArray

      input floating-point array of angles of 2D vectors.

    • x: OutputArray

      output array of x-coordinates of 2D vectors; it has the same size and type as angle.

    • y: OutputArray

      output array of y-coordinates of 2D vectors; it has the same size and type as angle.

    • Optional angleInDegrees: bool

      when true, the input angles are measured in degrees, otherwise, they are measured in radians.

    Returns void

pow

  • pow(src: InputArray, power: double, dst: OutputArray): void
  • The function [cv::pow] raises every element of the input array to power : \\[\\texttt{dst} (I) = \\fork{\\texttt{src}(I)^{power}}{if \\(\\texttt{power}\\) is integer}{|\\texttt{src}(I)|^{power}}{otherwise}\\]

    So, for a non-integer power exponent, the absolute values of input array elements are used. However, it is possible to get true values for negative values using some extra operations. In the example below, computing the 5th root of array src shows:

    Mat mask = src < 0;
    pow(src, 1./5, dst);
    subtract(Scalar::all(0), dst, dst, mask);

    For some values of power, such as integer values, 0.5 and -0.5, specialized faster algorithms are used.

    Special values (NaN, Inf) are not handled.

    [sqrt], [exp], [log], [cartToPolar], [polarToCart]

    Parameters

    • src: InputArray

      input array.

    • power: double

      exponent of power.

    • dst: OutputArray

      output array of the same size and type as src.

    Returns void

randShuffle

  • randShuffle(dst: InputOutputArray, iterFactor?: double, rng?: any): void
  • The function [cv::randShuffle] shuffles the specified 1D array by randomly choosing pairs of elements and swapping them. The number of such swap operations will be dst.rowsdst.colsiterFactor .

    [RNG], [sort]

    Parameters

    • dst: InputOutputArray

      input/output numerical 1D array.

    • Optional iterFactor: double

      scale factor that determines the number of random swap operations (see the details below).

    • Optional rng: any

      optional random number generator used for shuffling; if it is zero, theRNG () is used instead.

    Returns void

randn

  • randn(dst: InputOutputArray, mean: InputArray, stddev: InputArray): void
  • The function [cv::randn] fills the matrix dst with normally distributed random numbers with the specified mean vector and the standard deviation matrix. The generated random numbers are clipped to fit the value range of the output array data type.

    [RNG], [randu]

    Parameters

    • dst: InputOutputArray

      output array of random numbers; the array must be pre-allocated and have 1 to 4 channels.

    • mean: InputArray

      mean value (expectation) of the generated random numbers.

    • stddev: InputArray

      standard deviation of the generated random numbers; it can be either a vector (in which case a diagonal standard deviation matrix is assumed) or a square matrix.

    Returns void

randu

  • randu(dst: InputOutputArray, low: InputArray, high: InputArray): void
  • Non-template variant of the function fills the matrix dst with uniformly-distributed random numbers from the specified range: \\[\\texttt{low} _c \\leq \\texttt{dst} (I)_c < \\texttt{high} _c\\]

    [RNG], [randn], [theRNG]

    Parameters

    • dst: InputOutputArray

      output array of random numbers; the array must be pre-allocated.

    • low: InputArray

      inclusive lower boundary of the generated random numbers.

    • high: InputArray

      exclusive upper boundary of the generated random numbers.

    Returns void

reduce

  • reduce(src: InputArray, dst: OutputArray, dim: int, rtype: int, dtype?: int): void
  • The function [reduce] reduces the matrix to a vector by treating the matrix rows/columns as a set of 1D vectors and performing the specified operation on the vectors until a single row/column is obtained. For example, the function can be used to compute horizontal and vertical projections of a raster image. In case of [REDUCE_MAX] and [REDUCE_MIN] , the output image should have the same type as the source one. In case of [REDUCE_SUM] and [REDUCE_AVG] , the output may have a larger element bit-depth to preserve accuracy. And multi-channel arrays are also supported in these two reduction modes.

    The following code demonstrates its usage for a single channel matrix.

            Mat m = (Mat_<uchar>(3,2) << 1,2,3,4,5,6);
            Mat col_sum, row_sum;
    
            reduce(m, col_sum, 0, REDUCE_SUM, CV_32F);
            reduce(m, row_sum, 1, REDUCE_SUM, CV_32F);
            /*
            m =
            [  1,   2;
               3,   4;
               5,   6]
            col_sum =
            [9, 12]
            row_sum =
            [3;
             7;
             11]
    \/

    And the following code demonstrates its usage for a two-channel matrix.

            // two channels
            char d[] = {1,2,3,4,5,6};
            Mat m(3, 1, CV_8UC2, d);
            Mat col_sum_per_channel;
            reduce(m, col_sum_per_channel, 0, REDUCE_SUM, CV_32F);
            /*
            col_sum_per_channel =
            [9, 12]
    \/

    [repeat]

    Parameters

    • src: InputArray

      input 2D matrix.

    • dst: OutputArray

      output vector. Its size and type is defined by dim and dtype parameters.

    • dim: int

      dimension index along which the matrix is reduced. 0 means that the matrix is reduced to a single row. 1 means that the matrix is reduced to a single column.

    • rtype: int

      reduction operation that could be one of ReduceTypes

    • Optional dtype: int

      when negative, the output vector will have the same type as the input matrix, otherwise, its type will be CV_MAKE_TYPE(CV_MAT_DEPTH(dtype), src.channels()).

    Returns void

repeat

  • repeat(src: InputArray, ny: int, nx: int, dst: OutputArray): void
  • repeat(src: any, ny: int, nx: int): Mat
  • The function [cv::repeat] duplicates the input array one or more times along each of the two axes: \\[\\texttt{dst} _{ij}= \\texttt{src} _{i\\mod src.rows, \\; j\\mod src.cols }\\] The second variant of the function is more convenient to use with [MatrixExpressions].

    [cv::reduce]

    Parameters

    • src: InputArray

      input array to replicate.

    • ny: int

      Flag to specify how many times the src is repeated along the vertical axis.

    • nx: int

      Flag to specify how many times the src is repeated along the horizontal axis.

    • dst: OutputArray

      output array of the same type as src.

    Returns void

  • This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

    Parameters

    • src: any

      input array to replicate.

    • ny: int

      Flag to specify how many times the src is repeated along the vertical axis.

    • nx: int

      Flag to specify how many times the src is repeated along the horizontal axis.

    Returns Mat

rotate

  • rotate(src: InputArray, dst: OutputArray, rotateCode: int): void
  • [transpose] , [repeat] , [completeSymm], [flip], [RotateFlags]

    Parameters

    • src: InputArray

      input array.

    • dst: OutputArray

      output array of the same type as src. The size is the same with ROTATE_180, and the rows and cols are switched for ROTATE_90_CLOCKWISE and ROTATE_90_COUNTERCLOCKWISE.

    • rotateCode: int

      an enum to specify how to rotate the array; see the enum RotateFlags

    Returns void

scaleAdd

  • scaleAdd(src1: InputArray, alpha: double, src2: InputArray, dst: OutputArray): void
  • The function scaleAdd is one of the classical primitive linear algebra operations, known as DAXPY or SAXPY in . It calculates the sum of a scaled array and another array: \\[\\texttt{dst} (I)= \\texttt{scale} \\cdot \\texttt{src1} (I) + \\texttt{src2} (I)\\] The function can also be emulated with a matrix expression, for example:

    Mat A(3, 3, CV_64F);
    ...
    A.row(0) = A.row(1)*2 + A.row(2);

    [add], [addWeighted], [subtract], [Mat::dot], [Mat::convertTo]

    Parameters

    • src1: InputArray

      first input array.

    • alpha: double

      scale factor for the first array.

    • src2: InputArray

      second input array of the same size and type as src1.

    • dst: OutputArray

      output array of the same size and type as src1.

    Returns void

setIdentity

  • setIdentity(mtx: InputOutputArray, s?: any): void
  • The function [cv::setIdentity] initializes a scaled identity matrix: \\[\\texttt{mtx} (i,j)= \\fork{\\texttt{value}}{ if \\(i=j\\)}{0}{otherwise}\\]

    The function can also be emulated using the matrix initializers and the matrix expressions:

    Mat A = Mat::eye(4, 3, CV_32F)*5;
    // A will be set to [[5, 0, 0], [0, 5, 0], [0, 0, 5], [0, 0, 0]]

    [Mat::zeros], [Mat::ones], [Mat::setTo], [Mat::operator=]

    Parameters

    • mtx: InputOutputArray

      matrix to initialize (not necessarily square).

    • Optional s: any

      value to assign to diagonal elements.

    Returns void

setRNGSeed

  • setRNGSeed(seed: int): void
  • The function [cv::setRNGSeed] sets state of default random number generator to custom value.

    [RNG], [randu], [randn]

    Parameters

    • seed: int

      new state for default random number generator

    Returns void

solve

  • solve(src1: InputArray, src2: InputArray, dst: OutputArray, flags?: int): bool
  • The function [cv::solve] solves a linear system or least-squares problem (the latter is possible with [SVD] or QR methods, or by specifying the flag [DECOMP_NORMAL] ): \\[\\texttt{dst} = \\arg \\min _X \\| \\texttt{src1} \\cdot \\texttt{X} - \\texttt{src2} \\|\\]

    If [DECOMP_LU] or [DECOMP_CHOLESKY] method is used, the function returns 1 if src1 (or $\\texttt{src1}^T\\texttt{src1}$ ) is non-singular. Otherwise, it returns 0. In the latter case, dst is not valid. Other methods find a pseudo-solution in case of a singular left-hand side part.

    If you want to find a unity-norm solution of an under-defined singular system $\\texttt{src1}\\cdot\\texttt{dst}=0$ , the function solve will not do the work. Use [SVD::solveZ] instead.

    [invert], [SVD], [eigen]

    Parameters

    • src1: InputArray

      input matrix on the left-hand side of the system.

    • src2: InputArray

      input matrix on the right-hand side of the system.

    • dst: OutputArray

      output solution.

    • Optional flags: int

      solution (matrix inversion) method (DecompTypes)

    Returns bool

solveCubic

  • solveCubic(coeffs: InputArray, roots: OutputArray): int
  • The function solveCubic finds the real roots of a cubic equation:

    if coeffs is a 4-element vector: \\[\\texttt{coeffs} [0] x^3 + \\texttt{coeffs} [1] x^2 + \\texttt{coeffs} [2] x + \\texttt{coeffs} [3] = 0\\] if coeffs is a 3-element vector: \\[x^3 + \\texttt{coeffs} [0] x^2 + \\texttt{coeffs} [1] x + \\texttt{coeffs} [2] = 0\\]

    The roots are stored in the roots array.

    number of real roots. It can be 0, 1 or 2.

    Parameters

    • coeffs: InputArray

      equation coefficients, an array of 3 or 4 elements.

    • roots: OutputArray

      output array of real roots that has 1 or 3 elements.

    Returns int

solvePoly

  • solvePoly(coeffs: InputArray, roots: OutputArray, maxIters?: int): double
  • The function [cv::solvePoly] finds real and complex roots of a polynomial equation: \\[\\texttt{coeffs} [n] x^{n} + \\texttt{coeffs} [n-1] x^{n-1} + ... + \\texttt{coeffs} [1] x + \\texttt{coeffs} [0] = 0\\]

    Parameters

    • coeffs: InputArray

      array of polynomial coefficients.

    • roots: OutputArray

      output (complex) array of roots.

    • Optional maxIters: int

      maximum number of iterations the algorithm does.

    Returns double

sort

  • sort(src: InputArray, dst: OutputArray, flags: int): void
  • The function [cv::sort] sorts each matrix row or each matrix column in ascending or descending order. So you should pass two operation flags to get desired behaviour. If you want to sort matrix rows or columns lexicographically, you can use STL std::sort generic function with the proper comparison predicate.

    [sortIdx], [randShuffle]

    Parameters

    • src: InputArray

      input single-channel array.

    • dst: OutputArray

      output array of the same size and type as src.

    • flags: int

      operation flags, a combination of SortFlags

    Returns void

sortIdx

  • sortIdx(src: InputArray, dst: OutputArray, flags: int): void
  • The function [cv::sortIdx] sorts each matrix row or each matrix column in the ascending or descending order. So you should pass two operation flags to get desired behaviour. Instead of reordering the elements themselves, it stores the indices of sorted elements in the output array. For example:

    Mat A = Mat::eye(3,3,CV_32F), B;
    sortIdx(A, B, SORT_EVERY_ROW + SORT_ASCENDING);
    // B will probably contain
    // (because of equal elements in A some permutations are possible):
    // [[1, 2, 0], [0, 2, 1], [0, 1, 2]]

    [sort], [randShuffle]

    Parameters

    • src: InputArray

      input single-channel array.

    • dst: OutputArray

      output integer array of the same size as src.

    • flags: int

      operation flags that could be a combination of cv::SortFlags

    Returns void

split

  • split(src: any, mvbegin: any): void
  • split(m: InputArray, mv: OutputArrayOfArrays): void
  • The function [cv::split] splits a multi-channel array into separate single-channel arrays: \\[\\texttt{mv} [c](I) = \\texttt{src} (I)_c\\] If you need to extract a single channel or do some other sophisticated channel permutation, use mixChannels .

    The following example demonstrates how to split a 3-channel matrix into 3 single channel matrices.

        char d[] = {1,2,3,4,5,6,7,8,9,10,11,12};
        Mat m(2, 2, CV_8UC3, d);
        Mat channels[3];
        split(m, channels);
    
        /*
        channels[0] =
        [  1,   4;
           7,  10]
        channels[1] =
        [  2,   5;
           8,  11]
        channels[2] =
        [  3,   6;
           9,  12]
    \/

    [merge], [mixChannels], [cvtColor]

    Parameters

    • src: any

      input multi-channel array.

    • mvbegin: any

      output array; the number of arrays must match src.channels(); the arrays themselves are reallocated, if needed.

    Returns void

  • This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

    Parameters

    • m: InputArray

      input multi-channel array.

    • mv: OutputArrayOfArrays

      output vector of arrays; the arrays themselves are reallocated, if needed.

    Returns void

sqrt

  • sqrt(src: InputArray, dst: OutputArray): void
  • The function [cv::sqrt] calculates a square root of each input array element. In case of multi-channel arrays, each channel is processed independently. The accuracy is approximately the same as of the built-in std::sqrt .

    Parameters

    • src: InputArray

      input floating-point array.

    • dst: OutputArray

      output array of the same size and type as src.

    Returns void

subtract

  • subtract(src1: InputArray, src2: InputArray, dst: OutputArray, mask?: InputArray, dtype?: int): void
  • The function subtract calculates:

    Difference between two arrays, when both input arrays have the same size and the same number of channels: \\[\\texttt{dst}(I) = \\texttt{saturate} ( \\texttt{src1}(I) - \\texttt{src2}(I)) \\quad \\texttt{if mask}(I) \\ne0\\] Difference between an array and a scalar, when src2 is constructed from Scalar or has the same number of elements as src1.channels(): \\[\\texttt{dst}(I) = \\texttt{saturate} ( \\texttt{src1}(I) - \\texttt{src2} ) \\quad \\texttt{if mask}(I) \\ne0\\] Difference between a scalar and an array, when src1 is constructed from Scalar or has the same number of elements as src2.channels(): `\[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1}

    • \texttt{src2}(I) ) \quad \texttt{if mask}(I) \ne0\]The reverse difference between a scalar and an array in the case ofSubRS:\[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src2} - \texttt{src1}(I) ) \quad \texttt{if mask}(I) \ne0\]` where I is a multi-dimensional index of array elements. In case of multi-channel arrays, each channel is processed independently.

    The first function in the list above can be replaced with matrix expressions:

    dst = src1 - src2;
    dst -= src1; // equivalent to subtract(dst, src1, dst);

    The input arrays and the output array can all have the same or different depths. For example, you can subtract to 8-bit unsigned arrays and store the difference in a 16-bit signed array. Depth of the output array is determined by dtype parameter. In the second and third cases above, as well as in the first case, when src1.depth() == src2.depth(), dtype can be set to the default -1. In this case the output array will have the same depth as the input array, be it src1, src2 or both.

    Saturation is not applied when the output array has the depth CV_32S. You may even get result of an incorrect sign in the case of overflow.

    [add], [addWeighted], [scaleAdd], [Mat::convertTo]

    Parameters

    • src1: InputArray

      first input array or a scalar.

    • src2: InputArray

      second input array or a scalar.

    • dst: OutputArray

      output array of the same size and the same number of channels as the input array.

    • Optional mask: InputArray

      optional operation mask; this is an 8-bit single channel array that specifies elements of the output array to be changed.

    • Optional dtype: int

      optional depth of the output array

    Returns void

sum

  • sum(src: InputArray): Scalar
  • The function [cv::sum] calculates and returns the sum of array elements, independently for each channel.

    [countNonZero], [mean], [meanStdDev], [norm], [minMaxLoc], [reduce]

    Parameters

    • src: InputArray

      input array that must have from 1 to 4 channels.

    Returns Scalar

theRNG

  • theRNG(): any
  • The function [cv::theRNG] returns the default random number generator. For each thread, there is a separate random number generator, so you can use the function safely in multi-thread environments. If you just need to get a single random number using this generator or initialize an array, you can use randu or randn instead. But if you are going to generate many random numbers inside a loop, it is much faster to use this function to retrieve the generator and then use RNG::operator _Tp() .

    [RNG], [randu], [randn]

    Returns any

trace

  • trace(mtx: InputArray): Scalar
  • The function [cv::trace] returns the sum of the diagonal elements of the matrix mtx . \\[\\mathrm{tr} ( \\texttt{mtx} ) = \\sum _i \\texttt{mtx} (i,i)\\]

    Parameters

    • mtx: InputArray

      input matrix.

    Returns Scalar

transform

  • transform(src: InputArray, dst: OutputArray, m: InputArray): void
  • The function [cv::transform] performs the matrix transformation of every element of the array src and stores the results in dst : \\[\\texttt{dst} (I) = \\texttt{m} \\cdot \\texttt{src} (I)\\] (when m.cols=src.channels() ), or \\[\\texttt{dst} (I) = \\texttt{m} \\cdot [ \\texttt{src} (I); 1]\\] (when m.cols=src.channels()+1 )

    Every element of the N -channel array src is interpreted as N -element vector that is transformed using the M x N or M x (N+1) matrix m to M-element vector - the corresponding element of the output array dst .

    The function may be used for geometrical transformation of N -dimensional points, arbitrary linear color space transformation (such as various kinds of RGB to YUV transforms), shuffling the image channels, and so forth.

    [perspectiveTransform], [getAffineTransform], [estimateAffine2D], [warpAffine], [warpPerspective]

    Parameters

    • src: InputArray

      input array that must have as many channels (1 to 4) as m.cols or m.cols-1.

    • dst: OutputArray

      output array of the same size and depth as src; it has as many channels as m.rows.

    • m: InputArray

      transformation 2x2 or 2x3 floating-point matrix.

    Returns void

transpose

  • transpose(src: InputArray, dst: OutputArray): void
  • The function [cv::transpose] transposes the matrix src : \\[\\texttt{dst} (i,j) = \\texttt{src} (j,i)\\]

    No complex conjugation is done in case of a complex matrix. It should be done separately if needed.

    Parameters

    • src: InputArray

      input array.

    • dst: OutputArray

      output array of the same type as src.

    Returns void

vconcat

  • vconcat(src: any, nsrc: size_t, dst: OutputArray): void
  • vconcat(src1: InputArray, src2: InputArray, dst: OutputArray): void
  • vconcat(src: InputArrayOfArrays, dst: OutputArray): void
  • The function vertically concatenates two or more [cv::Mat] matrices (with the same number of cols).

    cv::Mat matArray[] = { cv::Mat(1, 4, CV_8UC1, cv::Scalar(1)),
                           cv::Mat(1, 4, CV_8UC1, cv::Scalar(2)),
                           cv::Mat(1, 4, CV_8UC1, cv::Scalar(3)),};
    
    cv::Mat out;
    cv::vconcat( matArray, 3, out );
    //out:
    //[1,   1,   1,   1;
    // 2,   2,   2,   2;
    // 3,   3,   3,   3]

    [cv::hconcat(const Mat*, size_t, OutputArray)],

    [cv::hconcat(InputArrayOfArrays, OutputArray)] and

    [cv::hconcat(InputArray, InputArray, OutputArray)]

    Parameters

    • src: any

      input array or vector of matrices. all of the matrices must have the same number of cols and the same depth.

    • nsrc: size_t

      number of matrices in src.

    • dst: OutputArray

      output array. It has the same number of cols and depth as the src, and the sum of rows of the src.

    Returns void

  • This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

    cv::Mat_<float> A = (cv::Mat_<float>(3, 2) << 1, 7,
                                                  2, 8,
                                                  3, 9);
    cv::Mat_<float> B = (cv::Mat_<float>(3, 2) << 4, 10,
                                                  5, 11,
                                                  6, 12);
    
    cv::Mat C;
    cv::vconcat(A, B, C);
    //C:
    //[1, 7;
    // 2, 8;
    // 3, 9;
    // 4, 10;
    // 5, 11;
    // 6, 12]

    Parameters

    • src1: InputArray

      first input array to be considered for vertical concatenation.

    • src2: InputArray

      second input array to be considered for vertical concatenation.

    • dst: OutputArray

      output array. It has the same number of cols and depth as the src1 and src2, and the sum of rows of the src1 and src2.

    Returns void

  • This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

    std::vector<cv::Mat> matrices = { cv::Mat(1, 4, CV_8UC1, cv::Scalar(1)),
                                      cv::Mat(1, 4, CV_8UC1, cv::Scalar(2)),
                                      cv::Mat(1, 4, CV_8UC1, cv::Scalar(3)),};
    
    cv::Mat out;
    cv::vconcat( matrices, out );
    //out:
    //[1,   1,   1,   1;
    // 2,   2,   2,   2;
    // 3,   3,   3,   3]

    Parameters

    • src: InputArrayOfArrays

      input array or vector of matrices. all of the matrices must have the same number of cols and the same depth

    • dst: OutputArray

      output array. It has the same number of cols and depth as the src, and the sum of rows of the src. same depth.

    Returns void

Generated using TypeDoc